Wiley Aircraft Propulsion 2nd Edition Saeed Farokhi

Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.

The new European Joint Aviation Requirements (JARs) lay down rules governing the minimum levels of performance which must be attained by every type of public transport aeroplane. These rules cover matters such as weight, altitude and temperature, takeoff and landing distance, cruise flight level and speed, and descent angle and rate. The subject of aircraft performance forms an important part of all JAR Flight Crew Licensing examinations for commercial and airline transport pilot licences, and this book provides a clear but authoritative text on a difficult topic. It will also be of interest to commercial pilots needing to upgrade their annual ground test to JAR standards, and to flight planners, operations controllers and airport operators.

AIRCRAFT PROPULSION

The classic text for pilots on flight theory and aerodynamics?now in an updated Second Edition Flight Theory and Aerodynamics, the basic aeronautics text used by the United States Air Force in their Flying Safety Officer course, is the book that brings the science of flight into the cockpit. Designed for the student with little engineering or mathematical background, the book outlines the basic principles of aerodynamics and physics, using only a minimal amount of high school?level algebra and trigonometry necessary to illustrate key concepts. This expanded seventeen chapter Second Edition reflects the cutting edge of aeronautic theory and practice, and has been revised, reorganized, and updated with 30% new information?including a new chapter on helicopter flight. Central to the book?s structure is a clear description of aeronautic basics?what lifts and drives an aircraft, and what forces work for and against it?all detailed in the context of the design and analysis of today?s aircraft systems: Atmosphere and airspeed measurement Airfoils and aerodynamic forces Lift and drag Jet aircraft basic and applied performance Prop aircraft basic and applied performance Slow and high-speed flight Takeoff, landing, and maneuvering performance The book?s practical, self-study format includes problems at the end of each chapter, with answers at the back of the book, as well as chapter-end summaries of symbols and equations. An ideal text for the USN Aviation Safety Officer and the USAAA?s Aviation Safety Officer courses, as well as for professional pilots, student pilots, and flying safety personnel, Flight Theory and Aerodynamics is a complete and accessible guide to the subject, updated for the new millennium.

A comprehensive approach to the air vehicle design processusing the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for theadoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a system sengineering approach from conceptual design phase, through topreliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraftdesign, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout thebook the various design options are considered and weighed againsteach other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aerostructure, and flight dynamics willfind this book ideal to progress towards the next stage in theirunderstanding of the topic. Furthermore, the broad variety ofdesign techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approachingreal-world projects. Key features: • Providesfull coverage of the design aspects of an air vehicle including:aeronautical concepts, design techniques and design flowcharts • Featuresend of chapter problems to reinforce the learning process as wellas fully solved design examples at component level • Includes fundamental explanations for aeronautical engineeringstudents and practicing engineers • Features a solutions manual to sample questions on the book'scompanion website Companion website - ahref="http://www.wiley.com/go/sadraey"www.wiley.com/go/sadraey/a Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author's experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of Page 1/1

aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.

A significant addition to the literature on gas turbine technology, the second edition of Gas Turbine Performance is a lengthy text covering product advances and technological developments. Including extensive figures, charts, tables and formulae, this book will interest everyone concerned with gas turbine technology, whether they are designers, marketing staff or users.

Volume XII of the High Speed Aerodynamics and Jet Propulsion series. Partial Contents: Historical development of jet propulsion; basic principles of jet propulsion; analyses of the various types of jet propulsion engines including the turbojet, the turboprop, the ramjet, and intermittent jets, as well as solid and liquid propellant rocket engines and the ramrocket. Another section deals with jet driven rotors. The final sections discuss the use of atomic energy in jet propulsion and the future prospects of jet propulsion. Originally published in 1959. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Mechanics of Aircraft Structures, Second Edition is the revised update of the original bestselling textbook about aerospace engineering. This book covers the materials and analysis tools used for aircraft structural design and mechanics in the same easy to understand manner. The new edition focuses on three levels of coverage driven by recent advances in industry: the increase in the use of commercial finite element codes require an improved capability in students to formulate the problem and develop a judgement of the accuracy of the numerical results; the focus on fracture mechanics as a tool in studying damage tolerance and durability has made it necessary to introduce students at the undergraduate level to this subject; a new class of materials including advanced composites, are very different from the traditional metallic materials, requiring students and practitioners to understand the advantages the new materials make possible. This new edition will provide more homework problems for each chapter, more examples, and more details in some of the derivations.

Transportation systems and vehicles play an important role in modern life. They would not be possible without fuel. This handbook gives a comprehensive overview of various types of fuels used to power vehicles of all kinds and the processes to produce these fuels. The main focus is on automotive fuels, however, aviation and marine fuels are described as well as alternative and novel fuels, such as ethanol, methanol, natural gas and others. The book is not only valuable for students and graduated scientists from various industries like oil and automobile companies, but also for journalists interested in this field.

New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to reflect the FAA's 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.

This second edition of the classic on the thermochemistry of combustion now features five new chapters and updated coverage of significant recent developments in the field. Addressing both experimental as well as theoretical aspects, the book covers the thermochemical and combustion characteristics of all important types of energetic materials, such as explosives, propellants, and the new class of pyrolants, as well as related phenomena. It presents the fundamental bases of the energetics of materials, deflagration and detonation, thermochemical process of decomposition and combustion, plus combustion wave structures. The book also goes on to discuss the combustion mechanisms of various types of energetic materials, propellants, and explosives, based on the heat transfer process in the combustion waves. The burning rate models are also presented as an aid to understanding the rate-controlling steps of combustion processes, thus demonstrating the relationships of burning rate versus pressure and initial temperature. As a major topic new to this edition, new propulsion methods such as duct rockets, ramjets, pulse motors and thrusters are described in detail, while appendices on flow field dynamics and shock wave propagation have been added. Civil Avionics Systems is an in-depth study and explanation of avionics as applied to civil aircraft. Avionics covers analogue and digital electronics, sensors, signalling, and computers that transmit to and control the operations of the aircraft. Avionics includes the technology, systems development, electrical systems, sensors, communication, navigation, flight control, displays, engine and utilities control, and is also the integration of all these elements. Ian Moir and Allan Seabridge are both highly experienced in the aircraft industry and are also involved in devising and delivering training courses. Their direct and accessible style, along with the input of an international team of technical advisors, ensures that Civil Avionics Systems is an authoritative reference text. Provides a uniquely comprehensive source of information Illustrated throughout with line drawings and photographs, some in full colour Explains and explores the latest developments in avionics technology, including FANS ? Future Air Navigation Systems Includes a chapter on displays written by Malcolm Jukes, an internationally respected expert. Engineers in the airline industry, designers, manufacturers, operators, maintenance engineers, electronic component suppliers, engine manufacturers, air traffic controllers, navigation engineers, aircraft inspectors, accident investigators, and those studying become part of the aerospace industry will all find Civil Avionics Systems invaluable.

Aerospace propulsion devices embody some of the most advancedtechnologies, ranging from materials, fluid control, and heattransfer and combustion. In order to maximize the performance, sophisticated testing and computer simulation tools are developedand used. Aerospace Propulsion comprehensively covers the mechanicsand thermal-fluid aspects of aerospace propulsion, starting from the fundamental principles, and covering applications togas-turbine and space propulsion (rocket) systems. It presentsmodern analytical methods using MATLAB and other advanced softwareand includes essential elements of both gas-turbine and rocketpropulsion systems. Gas turbine coverage includes thermodynamicanalysis, turbine components, diffusers, compressors, turbines,nozzles, compressor-turbine matching, combustors and afterburners.Rocket coverage includes chemical rockets, electrical rockets,nuclear and solar sail. Key features: Both gas-turbine and rocket propulsion covered in a singlevolume Presents modern analytical methods and examples Combines fundamentals and applications, including spaceapplications Accompanied by a website containing MATLAB examples, problemsets and solutions Aerospace Propulsion is a comprehensive textbook forsenior undergraduate graduate and aerospace propulsion courses, andis also an excellent reference for researchers and practicingengineers working in this area.

Major changes in gas turbine design, especially in the design and complexity of engine control systems, have led to the need for an up to date, systems-oriented treatment of gas turbine propulsion. Pulling together all of the systems and subsystems associated with gas turbine engines in aircraft and marine applications, Gas Turbine Propulsion Systems discusses the latest developments in the field. Chapters include aircraft engine systems functional overview, marine propulsion systems, fuel control and power management systems, engine lubrication and scavenging systems, nacelle and ancillary systems, engine certification, unique engine systems and future developments in gas turbine propulsion systems. The authors also present examples of specific engines and applications. Written from a wholly practical perspective by two authors with long careers in the gas turbine & fuel systems industries, Gas Turbine Propulsion Systems provides an excellent resource for project and program managers in the gas turbine engine community, the aircraft OEM community, and tier 1 equipment suppliers in Europe and the United States. It also offers a useful reference for students and researchers in aerospace engineering.

Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book's first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text's coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.

Provides a significant update to the definitive book on aircraft system design This book is written for anyone who wants to understand how industry develops the customer requirement for aircraft into a fully integrated, tested, and gualified product that is safe to fly and fit for purpose. The new edition of Design and Development of Aircraft Systems fully expands its already comprehensive coverage to include both conventional and unmanned systems. It also updates all chapters to bring them in line with current design practice and technologies taught in courses at Cranfield, Bristol, and Loughborough universities in the UK. Design and Development of Aircraft Systems, 3rd Edition begins with an introduction to the subject. It then introduces readers to the aircraft systems (airframe, vehicle, avionic, mission, and ground systems). Following that comes a chapter on the design and development process. Other chapters look at design drivers, systems architectures, systems integration, verification of system requirements, practical considerations, and configuration control. The book finishes with sections that discuss the potential impact of complexity on flight safety, key characteristics of aircraft systems, and more. Provides a holistic view of aircraft system design, describing the interactions among subsystems such as fuel, navigation, flight control, and more Substantially updated coverage of systems engineering, design drivers, systems architectures, systems integration, modelling of systems, practical considerations, and systems examples Incorporates essential new material on the regulatory environment for both manned and unmanned systems Discussion of trends towards complex systems, automation, integration and the potential for an impact on flight safety Design and Development of Aircraft Systems, 3rd Edition is an excellent book for aerospace engineers, researchers, and graduate students involved in the field.

Aircraft PropulsionJohn Wiley & Sons

This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry. A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources: in sustainable aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author – a noted expert in the field – examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students

in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources: in sustainable aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.

Straightforward methods to design and operate aircraft to meet performance specifications Aircraft Performance sets forth a group of tested and proven methods needed to determine the performance of an aircraft. The central theme of this book is the energy method, which enhances understanding of the standard methods and provides accessibility to advanced topics. As a result, readers gain a thorough understanding of the performance issues involved in operating an aircraft in an efficient and economic manner. While covering all the standard topics--level and climbing flight, range and endurance, take-off and landing, and maneuvering flight--the book focuses on the energy methods applied to path performance analysis. Throughout the text, numerous examples from both the commercial and military sectors show readers how the concepts and calculations are applied to real-life situations. Problems, ranging from basic to complex, test the readers' understanding and provide an opportunity for essential practice. To help focus the readers' attention on core issues, this text assumes that aerodynamics and propulsion are known inputs. Special appendices are provided to present some aerodynamic and propulsive equations and data. In general, topics are separated into horizontal and vertical plane approaches. Following an introduction and overview, basic energy concepts are employed to obtain a fundamental performance equation. This text, with its extensive use of examples and problem sets, is ideal for upper-level undergraduate and graduate students in engineering. It also serves as a reference for design engineers in both military and industrial sectors who want a set of clear and reliable methods to calculate aircraft performance. This textbook addresses the elementary concepts of flight mechanics, everything from the equations of motion to aircraft performance.

Examines all stages of fuel production, from feedstocks tofinished products Exploring chemical structures and properties, this book shedsnew light on the current science and technology of producing energyefficient and environmentally friendly fuels. Moreover, it explains the role of fuel-additives in the production cycle. This expertlywritten and organized guide to fuels and fuel-additives also presents requirements, rules and regulations, including US and EUstandards governing automotive emissions, fuel quality and specifications, alternate fuels, biofuels, antioxidants, depositcontrol detergents/dispersants, stabilizers, corrosion inhibitors, and polymeric fuel-additives. Fuels and Fuel-Additives covers all stages and facets of the production of engine fuels as well as heating and fuel oils. The book begins with a quick portrait of the future of fuels andfuel production. Then, it sets forth the regulations controlling exhaust gas emissions and fuel quality from around the world. Next, the book covers: Processing of engine fuels derived from crude oil, including the production of blending components Production of alternative fuels Fuel-additives for automotive engines Blending of fuels Key properties of motor fuels and their effects on engines and the environment Aviation fuels The final chapter of the book deals with fuel oils and marinefuels. Each chapter is extensively referenced, providing a gatewayto the primary and secondary literature in the field. At the end of the book, a convenient glossary defines all the key terms used in the book. Examining the full production cycle from feedstocks to final products, Fuels and Fuel-Additives is recommended forstudents, engineers, and scientists working in fuels and energyproduction.

This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.

This third edition of Aircraft Systems represents a timely update of the Aerospace Series' successful and widely acclaimed flagship title. Moir and Seabridge present an in-depth study of the general systems of an aircraft – electronics, hydraulics, pneumatics, emergency systems and flight control to name but a few - that transform an aircraft shell into a living, functioning and communicating flying machine. Advances in systems technology continue to alloy systems and avionics, with aircraft support and flight systems increasingly controlled and monitored by electronics; the authors handle the complexities of these overlaps and interactions in a straightforward and accessible manner that also enhances synergy with the book's two sister volumes, Civil Avionics Systems and Military Avionics Systems. Aircraft Systems, 3rd Edition is thoroughly revised and expanded from the last edition in 2001, reflecting the significant technological and procedural changes that have occurred in the interim – new aircraft types, increased electronic implementation, developing markets, increased environmental pressures and the emergence of UAVs. Every chapter is updated, and the latest technologies depicted. It offers an essential reference tool for aerospace industry researchers and practitioners such as aircraft designers, fuel specialists, engine specialists, and ground crew maintenance providers, as well as a textbook for senior undergraduate and postgraduate students in systems engineering, aerospace and engineering avionics. Comprehensive textbook which introduces the fundamentals of aerospace engineering with a flight test perspective Introduction to Aerospace Engineering with a Flight Test Perspective is an introductory level text in aerospace engineering with a unique flight test perspective. Flight test, where dreams of aircraft and space vehicles actually take to the sky, is the bottom line in the application of aerospace engineering theories and principles. Designing and flying the real machines are often the reasons that these theories and principles were developed. This book provides a solid foundation in many of the fundamentals of aerospace engineering, while illuminating many aspects of real-world flight. Fundamental aerospace engineering subjects that are covered include aerodynamics, propulsion, performance, and stability and control. Key features: Covers aerodynamics, propulsion, performance, and stability and control. Includes self-contained sections on ground and flight test techniques. Includes worked example problems and homework problems. Suitable for introductory courses on Aerospace Engineering. Excellent resource for courses on flight testing. Introduction to Aerospace Engineering with a Flight Test Perspective is essential reading for undergraduate and graduate students in aerospace engineering, as well as practitioners in industry. It is an exciting and illuminating read for the aviation enthusiast seeking deeper understanding of flying machines and flight test. Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting

an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero

Explore the latest edition of a leading resource on sustainable aviation, alternative jet fuels, and new propulsion systems The newly revised Third Edition of Aircraft Propulsion delivers a comprehensive update to the successful second edition with a renewed focus on the integration of sustainable aviation concepts. The book tackles the impact of aviation on the environment at the engine component level, as well as the role of propulsion system integration on fuel burn. It also discusses combustion emissions, including greenhouse gases, carbon monoxide, unburned hydrocarbons (UHC) and oxides of nitrogen (NOx). Alternative jet fuels, like second generation biofuels and hydrogen, are presented. The distinguished author covers aviation noise from airframe to engine and its impact on community noise in landing and takeoff cycles. The book includes promising new technologies for propulsion and power, like the ultra-high bypass (UHB) turbofan and hybrid-electric and electric propulsion systems. Readers will also benefit from the inclusion of discussions of unsteady propulsion systems in wave-rotor combustion and pulse-detonation engines, as well as: A thorough introduction to the history of the airbreathing jet engine, including innovations in aircraft gas turbine engines, isentropic process and flow, and conservation principles A review of engine thrust and performance parameters, including installed thrust, rocket thrust, and modern engine architecture A discussion of gas turbine engine cycle analysis Perfect for aerospace and mechanical engineering students in the United States and overseas, Aircraft Propulsion will also earn a place in the libraries of practicing engineers in the aerospace and green engineering sectors seeking the latest up to date resource on sustainable aviation technologies.

In this textbook, the authors show that a few fundamental principles can provide students of mechanical and aeronautical engineering with a deep understanding of all modes of aircraft and spacecraft propulsion.

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA's Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter

Access Free Wiley Aircraft Propulsion 2nd Edition Saeed Farokhi

16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring nonisolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure. Now in its third edition, Jet Propulsion offers a self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engine design. Through two-engine design projects for a large passenger and a new fighter aircraft, the text explains modern engine design. Individual sections cover aircraft requirements, aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The civil aircraft, which formed the core of Part I in the previous editions, has now been in service for several years as the Airbus A380. Attention in the aircraft industry has now shifted to two-engine aircraft with a greater emphasis on reduction of fuel burn, so the model created for Part I in this edition is the new efficient aircraft, a twin aimed at high efficiency. The pilot's guide to aeronautics and the complex forces of flight Flight Theory and Aerodynamics is the essential pilot's guide to the physics of flight, designed specifically for those with limited engineering experience. From the basics of forces and vectors to craft-specific applications, this book explains the mechanics behind the pilot's everyday operational tasks. The discussion focuses on the concepts themselves, using only enough algebra and trigonometry to illustrate key concepts without getting bogged down in complex calculations, and then delves into the specific applications for jets, propeller crafts, and helicopters. This updated third edition includes new chapters on Flight Environment, Aircraft Structures, and UAS-UAV Flight Theory, with updated craft examples, component photos, and diagrams throughout. FAA-aligned questions and regulatory references help reinforce important concepts, and additional worked problems provide clarification on complex topics. Modern flight control systems are becoming more complex and more varied between aircrafts, making it essential for pilots to understand the aerodynamics of flight before they ever step into a cockpit. This book provides clear explanations and flight-specific examples of the physics every pilot must know. Review the basic physics of flight Understand the applications to specific types of aircraft Learn why takeoff and landing entail special considerations Examine the force concepts behind stability and control As a pilot, your job is to balance the effects of design, weight, load factors, and gravity during flight maneuvers, stalls, high- or low-speed flight, takeoff and landing, and more. As aircraft grow more complex and the controls become more involved, an intuitive grasp of the physics of flight is your most valuable tool for operational safety. Flight Theory and Aerodynamics is the essential resource every pilot needs for a clear understanding of the forces they control.

This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.

Readers of this book will be able to: utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems and be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions, perform preliminary aerothermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. Early coverage of cycle analysis provides a systems perspective, and offers context for the chapters on turbomachinery and components Broader coverage than found in most other books - including coverage of propellers, nuclear rockets, and space propulsion - allows analysis and design of more types of propulsion systems In depth, quantitative treatments of the components of jet propulsion engines provides the tools for evaluation and component matching for optimal system performance Worked examples and end of chapter exercises provide practice for analysis, preliminary design, and systems integration

New edition of the popular textbook, comprehensively updated throughout and now includes a new dedicated website for gas dynamic calculations The thoroughly revised and updated third edition of Fundamentals of Gas Dynamics maintains the focus on gas flows below hypersonic. This targeted approach provides a cohesive and rigorous examination of most practical engineering problems in this gas dynamics flow regime. The conventional one-dimensional flow approach together with the role of temperature-entropy diagrams are highlighted throughout. The authors—noted experts in the field—include a modern computational aid, illustrative charts and tables, and myriad examples of varying degrees of difficulty to aid in the understanding of the material presented. The updated edition of Fundamentals of Gas Dynamics includes new sections on the shock tube, the aerospike nozzle, and the gas dynamic laser. The book contains all equations, tables, and charts necessary to work the problems and exercises in each chapter. This book's accessible but rigorous style: Offers a comprehensively updated edition that includes new problems and examples Covers fundamentals of gas flows targeting those below hypersonic Presents the one-dimensional flow approach and highlights the role of temperature-entropy diagrams Contains new sections that examine the shock tube, the aerospike nozzle, the gas dynamic laser, and an expanded coverage of rocket propulsion Explores applications of gas dynamics to aircraft and rocket engines Includes behavioral objectives, summaries, and check tests to aid with learning Written for students in mechanical and aerospace engineering and professionals and researchers in the field, the third edition of Fundamentals of Gas Dynamics has been updated to include recent developments in the field and retains all its learning aids. The calculator for gas dynamics calculations is available at https://www.oscarbiblarz.com/gascalculator gas dynamics calculations Designed for introductory courses in aerodynamics, aeronautics and flight mechanics, this text examines the aerodynamics, propulsion, performance, stability and control of an aircraft. Major topics include lift, drag, compressible flow, design information, propellers, piston engines, turbojets, statics, dynamics, automatic stability and control. Two new chapters have been added to this edition on helicopters, V/STOL aircraft, and automatic control. "Aircrarft Propulsion presents thorough coverage of fundamental concepts along with numerous detailed examples and extensive illustrations. This accessible introduction first discusses compressible flow with heat and friction as well as engine thrust and performance

parameters. Readers will then learn about aircraft gas turbine engine cycles followed by aircraft engine components. And they'll discover the aerodynamics and performance of centrifugal compressors." -- Publisher description.

Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a "computational toolbox" composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering. Copyright: ee445b264b5e8ded84201c214c78d2ac