Artificial intelligence threatens to disrupt the professions as it has manufacturing. Frank Pasquale argues that law and policy can avert this outcome and promote better ones: instead of replacing humans, technology can make our labor more valuable. Through regulation, we can ensure that AI promotes inclusive prosperity.

As we approach a great turning point in history when technology is poised to redefine what it means to be human. The Fourth Age offers fascinating insight into AI, robotics, and their extraordinary implications for our species. "If you only read just one book about the AI revolution, make it this one" (John Mackey, cofounder and CEO, Whole Foods Market). In The Fourth Age, Byron Reese makes the case that technology has reshaped humanity just three times in history: 100,000 years ago, we harnessed fire, which led to language; 10,000 years ago, we developed agriculture, which led to cities and warfare; 5,000 years ago, we invented the wheel and writing, which lead to the nation state. We are now on the doorstep of a fourth change brought about by two technologies: Al and robotics. "Timely, highly informative, and certainly optimistic" (Booklist), The Fourth Age provides an essential background on how we got to this point, and how—rather than what—we should think about the topics we'll soon all be facing: machine consciousness, automation, changes in employment, creative computers, radical life extension, artificial life, AI ethics, the future of warfare, superintelligence, and the implications of extreme prosperity. By asking questions like "Are you a machine?" and "Could a computer feel anything?", Reese leads you through a discussion along the cutting edge in robotics and AI, and provides a framework by which we can all understand, discuss, and act on the issues of the Fourth Age and how they'll transform humanity.

Are AI robots and computers really going to take over the world? Artificial intelligence (AI) guru Steve Shwartz has grown frustrated with the fear-inducing hype around AI in popular culture and media. Yes, today's AI systems are miracles of modern engineering, but no, humans do not have to fear robots seizing control or taking over all our jobs. In this exploration of the fascinating and ever-changing landscape of AI, Shwartz separates the facts from the tropes of apocalyptic science fiction. This captivating book explains • how AI really works in simple terms and why it cannot evolve into the AI of science fiction lore; • the groundbreaking AI technologies that do exist, including facial recognition, self-driving cars, machine translation, deepfakes, and many others; • the crucial areas where we will need to adopt new laws and policies in order to counter threats to our safety and personal freedoms resulting from the widespread use of AI. So although we don't have to worry about evil robots rising to power and turning us into pets—and we probably never will—artificial intelligence is here to

stay, and we must learn to separate fact from fiction and embrace how this amazing technology enhances our world.

Dr. Lester A. Gerhardt Professor and Chairman Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute Troy, New York 12180 This book is a collection of papers on the subject of Robotics and Artificial Intelligence. Most of the papers contained herein were presented as part of the program of the NATO Advanced Study Institute held in June 1983 at Castel vecchio Pascoli, Italy on the same subject. Attendance at this two week Institute was by invitation only, drawing people internationally representing industry, government and the academic community worldwide. Many of the people in attendance, as well as those presenting papers, are recognized leaders in the field. In addition to the formal paper presentations, there were several informal work shops. These included a workshop on sensing, a workshop on educational methodology in the subject area, as examples. This book is an outgrowth and direct result of that Institute and includes the papers presented as well as a few others which were stimulated by that meeting. A special note is the paper entitled "State-of-the-Art and Predictions for Artificial Intelligence and Robotics" by Dr. R. Nagel which appears in the Introduction and Overview chapter of this book. This paper was originally developed as part of a study for the United States Army performed by the National Research Council of the National Academy of Science and published as part of a report entitled "Applications of Robotics and Artificial Intelligence to Reduce Risk and Improve Effectiveness" by National Academy Press in 1983.

Explains how artificial intelligence is pushing the limits of the law and how we must respond.

In Artificial Intelligence: Robot Law, Policy and Ethics, Dr. Nathalie Rébé discusses the legal and contemporary issues in relation to creating conscious robots. This book provides an in-depth analysis of the existing regulatory tools, as well as a new comprehensive framework for regulating Strong AI.

Artificial intelligence is spreading all over the world. It's changing societies and influencing technologies, too. But did you know that there are different types of Al robots used in numerous industries? You will meet them in this book for fifth graders. There are a lot of interesting information that can be learned by reading. Pick up the habit today!

Introduction to AI Robotics, second editionMIT Press

The New York Times-bestselling guide to how automation is changing the economy, undermining work, and reshaping our lives Winner of Best Business Book of the Year awards from the Financial Times and from Forbes "Lucid, comprehensive, and unafraid...;an indispensable contribution to a long-running argument."--Los Angeles Times What are the jobs of the future? How many will there be? And who will have them? As technology continues to accelerate and machines begin taking care of themselves, fewer people will be necessary. Artificial intelligence is already well on its way to making "good jobs" obsolete: many paralegals, journalists, office workers, and

even computer programmers are poised to be replaced by robots and smart software. As progress continues, blue and white collar jobs alike will evaporate, squeezing working- and middle-class families ever further. At the same time, households are under assault from exploding costs, especially from the two major industries-education and health care-that, so far, have not been transformed by information technology. The result could well be massive unemployment and inequality as well as the implosion of the consumer economy itself. The past solutions to technological disruption, especially more training and education, aren't going to work. We must decide, now, whether the future will see broad-based prosperity or catastrophic levels of inequality and economic insecurity. Rise of the Robots is essential reading to understand what accelerating technology means for our economic prospects-not to mention those of our children-as well as for society as a whole.

Artificial intelligence is spreading all over the world. It's changing societies and influencing technologies, too. But did you know that there are different types of AI robots used in numerous industries? You will meet them in this book for fifth graders. There are a lot of interesting information that can be learned by reading. Pick up the habit today!

A comprehensive survey of artificial intelligence algorithms and programming organization for robot systems, combining theoretical rigor and practical applications. This textbook offers a comprehensive survey of artificial intelligence (AI) algorithms and programming organization for robot systems. Readers who master the topics covered will be able to design and evaluate an artificially intelligent robot for applications involving sensing, acting, planning, and learning. A background in AI is not required; the book introduces key AI topics from all AI subdisciplines throughout the book and explains how they contribute to autonomous capabilities. This second edition is a major expansion and reorganization of the first edition, reflecting the dramatic advances made in AI over the past fifteen years. An introductory overview provides a framework for thinking about AI for robotics, distinguishing between the fundamentally different design paradigms of automation and autonomy. The book then discusses the reactive functionality of sensing and acting in AI robotics; introduces the deliberative functions most often associated with intelligence and the capability of autonomous initiative; surveys multi-robot systems and (in a new chapter) human-robot interaction; and offers a "metaview" of how to design and evaluate autonomous systems and the ethical considerations in doing so. New material covers locomotion, simultaneous localization and mapping, human-robot interaction, machine learning, and ethics. Each chapter includes exercises, and many chapters provide case studies. Endnotes point to additional reading, highlight advanced topics, and offer robot trivia.

How to develop robots that will be more like humans and less like computers, more social than machine-like, and more playful and less programmed. Most robots are not very friendly. They vacuum the rug, mow the lawn, dispose of bombs, even perform surgery—but they aren't good conversationalists. It's difficult to make eye contact. If the future promises more human-robot collaboration in both work and play, wouldn't it be better if the robots were less mechanical and more social? In How to Grow a Robot, Mark Lee explores how robots can be more human-like, friendly, and engaging. Developments in artificial intelligence—notably Deep Learning—are widely seen as the foundation on which our robot future will be built. These advances have already brought

us self-driving cars and chess match-winning algorithms. But, Lee writes, we need robots that are perceptive, animated, and responsive-more like humans and less like computers, more social than machine-like, and more playful and less programmed. The way to achieve this, he argues, is to "grow" a robot so that it learns from experience—just as infants do. After describing "what's wrong with artificial intelligence" (one key shortcoming: it's not embodied), Lee presents a different approach to building human-like robots: developmental robotics, inspired by developmental psychology and its accounts of early infant behavior. He describes his own experiments with the iCub humanoid robot and its development from newborn helplessness to ability levels equal to a nine-month-old, explaining how the iCub learns from its own experiences. Al robots are designed to know humans as objects; developmental robots will learn empathy. Developmental robots, with an internal model of "self," will be better interactive partners with humans. That is the kind of future technology we should work toward. This book highlights selected papers presented at the 2nd International Symposium on Artificial Intelligence and Robotics 2017 (ISAIR2017), held in Nakamura Centenary Memorial Hall, Kitakyushu, Japan on November 25–26, 2017. Today, the integration of artificial intelligence and robotic technologies has become a topic of growing interest for both researchers and developers from academic fields and industries worldwide, and artificial intelligence is poised to become the main approach pursued in next-generation robotics research. The rapidly growing number of artificial intelligence algorithms and big data solutions has significantly extended the number of potential applications for robotic technologies. However, it also poses new challenges for the artificial intelligence community. The aim of this symposium is to provide a platform for young researchers to share the latest scientific achievements in this field, which are discussed in these proceedings.

The truth about robots: two experts look beyond the hype, offering a lively and accessible guide to what robots can (and can't) do. There's a lot of hype about robots; some of it is scary and some of it utopian. In this accessible book, two robotics experts reveal the truth about what robots can and can't do, how they work, and what we can reasonably expect their future capabilities to be. It will not only make you think differently about the capabilities of robots; it will make you think differently about the capabilities of humans. Ruth Aylett and Patricia Vargas discuss the history of our fascination with robots-from chatbots and prosthetics to autonomous cars and robot swarms. They show us the ways in which robots outperform humans and the ways they fall woefully short of our superior talents. They explain how robots see, feel, hear, think, and learn; describe how robots can cooperate; and consider robots as pets, butlers, and companions. Finally, they look at robots that raise ethical and social issues: killer robots, sexbots, and robots that might be gunning for your job. Living with Robots equips readers to look at robots concretely—as human-made artifacts rather than placeholders for our anxieties. Find out: •Why robots can swim and fly but find it difficult to walk •Which robot features are inspired by animals and insects •Why we develop feelings for robots •Which human abilities are hard for robots to emulate A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even

ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

"Startling in scope and bravado." —Janet Maslin, The New York Times "Artfully envisions a breathtakingly better world." —Los Angeles Times "Elaborate, smart and persuasive." —The Boston Globe "A pleasure to read." —The Wall Street Journal One of CBS News's Best Fall Books of 2005 • Among St Louis Post-Dispatch's Best Nonfiction Books of 2005 • One of Amazon.com's Best Science Books of 2005 A radical and optimistic view of the future course of human development from the bestselling author of How to Create a Mind and The Singularity is Nearer who Bill Gates calls "the best person I know at predicting the future of artificial intelligence" For over three decades, Ray Kurzweil has been one of the most respected and provocative advocates of the role of technology in our future. In his classic The Age of Spiritual Machines, he argued that computers would soon rival the full range of human intelligence at its best. Now he examines the next step in this inexorable evolutionary process: the union of human and machine, in which the knowledge and skills embedded in our brains will be combined with the vastly greater capacity, speed, and knowledge-sharing ability of our creations.

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to

make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

This book explores the making of robots in labs at the Massachusetts Institute of Technology (MIT). It examines the cultural ideas that go into the making of robots, and the role of fiction in co-constructing the technological practices of the robotic scientists. The book engages with debates in anthropological theorizing regarding the way that robots are reimagined as intelligent, autonomous and social and weaved into lived social realities. Richardson charts the move away from the "worker" robot of the 1920s to the "social" one of the 2000s, as robots are reimagined as companions, friends and therapeutic agents.

Bring a new degree of interconnectivity to your world by building your own intelligent robots Key Features Leverage fundamentals of AI and robotics Work through use cases to implement various machine learning algorithms Explore Natural Language Processing (NLP) concepts for efficient decision making in robots Book Description Artificial Intelligence for Robotics starts with an introduction to Robot Operating Systems (ROS), Python, robotic fundamentals, and the software and tools that are required to start out with robotics. You will learn robotics concepts that will be useful for making decisions, along with basic navigation skills. As you make your way through the chapters, you will learn about object recognition and genetic algorithms, which will teach your robot to identify and pick up an irregular object. With plenty of use cases throughout, you will explore natural language processing (NLP) and machine learning techniques to further enhance your robot. In the concluding chapters, you will learn about path planning and goal-oriented programming, which will help your robot prioritize tasks. By the end of this book, you will have learned to give your robot an artificial personality using simulated intelligence. What you will learn Get started with robotics and artificial intelligence Apply simulation techniques to give your robot an artificial personality Understand object recognition using neural networks and supervised learning techniques Pick up objects using genetic algorithms for manipulation Teach your robot to listen using NLP via an expert system Use machine learning and computer vision to teach your robot how to avoid obstacles Understand path planning, decision trees, and search algorithms in order to enhance your robot Who this book is for If you have basic knowledge about

robotics and want to build or enhance your existing robot's intelligence, then Artificial Intelligence for Robotics is for you. This book is also for enthusiasts who want to gain knowledge of AI and robotics.

Argues that treating people and artificial intelligence differently under the law results in unexpected and harmful outcomes for social welfare.

This open access book introduces the reader to the foundations of AI and ethics. It discusses issues of trust, responsibility, liability, privacy and risk. It focuses on the interaction between people and the AI systems and Robotics they use. Designed to be accessible for a broad audience, reading this book does not require prerequisite technical, legal or philosophical expertise. Throughout, the authors use examples to illustrate the issues at hand and conclude the book with a discussion on the application areas of AI and Robotics, in particular autonomous vehicles, automatic weapon systems and biased algorithms. A list of questions and further readings is also included for students willing to explore the topic further.

This volume aims to provide a reference to the development of robotic intelligence, built upon Semantic Computing, in terms of 'action' to realize the 'context' and 'intention' formulated by Semantics Computing during the 'thinking' or reasoning process. It addresses three core areas:

Robot intelligence has become a major focus of intelligent robotics. Recent innovation in computational intelligence including fuzzy learning, neural networks, evolutionary computation and classical Artificial Intelligence provides sufficient theoretical and experimental foundations for enabling robots to undertake a variety of tasks with reasonable performance. This book reflects the recent advances in the field from an advanced knowledge processing perspective; there have been attempts to solve knowledge based information explosion constraints by integrating computational intelligence in the robotics context.

Looking for ways to handle the transition to a digital economy Robots, artificial intelligence, and driverless cars are no longer things of the distant future. They are with us today and will become increasingly common in coming years, along with virtual reality and digital personal assistants. As these tools advance deeper into everyday use, they raise the question-how will they transform society, the economy, and politics? If companies need fewer workers due to automation and robotics, what happens to those who once held those jobs and don't have the skills for new jobs? And since many social benefits are delivered through jobs, how are people outside the workforce for a lengthy period of time going to earn a living and get health care and social benefits? Looking past today's headlines, political scientist and cultural observer Darrell M. West argues that society needs to rethink the concept of jobs, reconfigure the social contract, move toward a system of lifetime learning, and develop a new kind of politics that can deal with economic dislocations. With the U.S. governance system in shambles because of political polarization and hyper-partisanship, dealing creatively with the transition to a fully digital economy will vex political leaders and complicate the adoption of

remedies that could ease the transition pain. It is imperative that we make major adjustments in how we think about work and the social contract in order to prevent society from spiraling out of control. This book presents a number of proposals to help people deal with the transition from an industrial to a digital economy. We must broaden the concept of employment to include volunteering and parenting and pay greater attention to the opportunities for leisure time. New forms of identity will be possible when the "job" no longer defines people's sense of personal meaning, and they engage in a broader range of activities. Workers will need help throughout their lifetimes to acquire new skills and develop new job capabilities. Political reforms will be necessary to reduce polarization and restore civility so there can be open and healthy debate about where responsibility lies for economic well-being. This book is an important contribution to a discussion about tomorrow—one that needs to take place today.

From AI to Robotics: Mobile, Social, and Sentient Robots is a journey into the world of agentbased robotics and it covers a number of interesting topics, both in the theory and practice of the discipline. The book traces the earliest ideas for autonomous machines to the mythical lore of ancient Greece and ends the last chapter with a debate on a prophecy set in the apparent future, where human beings and robots/technology may merge to create superior beings - the era of transhumanism. Throughout the text, the work of leading researchers is presented in depth, which helps to paint the socio-economic picture of how robots are transforming our world and will continue to do so. This work is presented along with the influences and ideas from futurists, such as Asimov, Moravec, Lem, Vinge, and of course Kurzweil. The book furthers the discussion with concepts of Artificial Intelligence and how it manifests in robotic agents. Discussions across various topics are presented in the book, including control paradigm, navigation, software, multi-robot systems, swarm robotics, robots in social roles, and artificial consciousness in robots. These discussions help to provide an overall picture of current day agent- based robotics and its prospects for the future. Examples of software and implementation in hardware are covered in Chapter 5 to encourage the imagination and creativity of budding robot enthusiasts. The book addresses several broad themes, such as AI in theory versus applied AI for robots, concepts of anthropomorphism, embodiment and situatedness, extending theory of psychology and animal behavior to robots, and the proposal that in the future, AI may be the new definition of science. Behavior-based robotics is covered in Chapter 2 and retells the debate between deliberative and reactive approaches. The text reiterates that the effort of modern day robotics is to replicate human-like intelligence and behavior, and the tools that a roboticist has at his or her disposal are open source software, which is often powered by crowd-sourcing. Open source meta-projects, such as Robot Operating System (ROS), etc. are briefly discussed in Chapter 5. The ideas and themes presented in the book are supplemented with cartoons, images, schematics and a number of special sections to make the material engaging for the reader. Designed for robot enthusiasts researchers, students, or the hobbyist, this comprehensive book will entertain and inspire anyone interested in the exciting world of robots.

Artificial intelligence and related technologies are changing both the law and the legal profession. In particular, technological advances in fields ranging from machine learning to more advanced robots, including sensors, virtual realities, algorithms, bots, drones, self-driving cars, and more sophisticated "human-like" robots are creating new and previously unimagined challenges for regulators. These advances also give rise to new opportunities for legal professionals to make efficiency gains in the delivery of legal services. With the exponential growth of such technologies, radical disruption seems likely to accelerate in the near future.

This collection brings together a series of contributions by leading scholars in the newly emerging field of artificial intelligence, robotics, and the law. The aim of the book is to enrich legal debates on the social meaning and impact of this type of technology. The distinctive feature of the contributions presented in this edition is that they address the impact of these technological developments in a number of different fields of law and from the perspective of diverse jurisdictions. Moreover, the authors utilize insights from multiple related disciplines, in particular social theory and philosophy, in order to better understand and address the legal challenges created by AI. Therefore, the book will contribute to interdisciplinary debates on disruptive new AI technologies and the law.

Behavior Trees (BTs) provide a way to structure the behavior of an artificial agent such as a robot or a non-player character in a computer game. Traditional design methods, such as finite state machines, are known to produce brittle behaviors when complexity increases, making it very hard to add features without breaking existing functionality. BTs were created to address this very problem, and enables the creation of systems that are both modular and reactive. Behavior Trees in Robotics and AI: An Introduction provides a broad introduction as well as an in-depth exploration of the topic, and is the first comprehensive book on the use of BTs. This book introduces the subject of BTs from simple topics, such as semantics and design principles, to complex topics, such as learning and task planning. For each topic, the authors provide a set of examples, ranging from simple illustrations to realistic complex behaviors, to enable the reader to successfully combine theory with practice. Starting with an introduction to BTs, the book then describes how BTs relate to, and in many cases, generalize earlier switching structures, or control architectures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. The book then presents a set of important extensions and provides a set of tools for formally analyzing these extensions using a state space formulation of BTs. With the new analysis tools, the book then formalizes the descriptions of how BTs generalize earlier approaches and shows how BTs can be automatically generated using planning and learning. The final part of the book provides an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion. This book targets a broad audience, including both students and professionals interested in modeling complex behaviors for robots, game characters, or other AI agents. Readers can choose at which depth and pace they want to learn the subject, depending on their needs and background.

This comprehensive presentation of the core concepts and historical landmarks in robotics and artificial intelligence is a must-read for those who want to understand the important changes happening now in our everyday lives, in the workplace, and in our minds and bodies. What is deep in "deep learning"? Can artificial intelligence really think? What will robots really look like in the near future? Is there a new class divide between those who understand technology and those who fear it? A clear and exhaustive introduction for non-specialists, 30-Second AI & Robotics will help the reader to navigate the world of ubiquitous computers, smart cities, and collaborative robots. At last, an optimistic and friendly book about our human possibilities in the time of automata.

Science world luminary John Brockman assembles twenty-five of the most important scientific minds, people who have been thinking about the field artificial intelligence for most of their careers, for an unparalleled round-table examination about mind, thinking, intelligence and what it means to be human. "Artificial intelligence is today's story--the story behind all other stories. It is the Second Coming and the Apocalypse at the same time: Good AI versus evil AI." --John Brockman More than sixty years ago, mathematician-philosopher Norbert Wiener published a book on the place of machines in society that ended with a warning: "we shall never receive the right answers to our questions unless we ask the right questions.... The hour

is very late, and the choice of good and evil knocks at our door." In the wake of advances in unsupervised, self-improving machine learning, a small but influential community of thinkers is considering Wiener's words again. In Possible Minds, John Brockman gathers their disparate visions of where AI might be taking us. The fruit of the long history of Brockman's profound engagement with the most important scientific minds who have been thinking about AI--from Alison Gopnik and David Deutsch to Frank Wilczek and Stephen Wolfram--Possible Minds is an ideal introduction to the landscape of crucial issues AI presents. The collision between opposing perspectives is salutary and exhilarating; some of these figures, such as computer scientist Stuart Russell, Skype co-founder Jaan Tallinn, and physicist Max Tegmark, are deeply concerned with the threat of AI, including the existential one, while others, notably robotics entrepreneur Rodney Brooks, philosopher Daniel Dennett, and bestselling author Steven Pinker, have a very different view. Serious, searching and authoritative, Possible Minds lays out the intellectual landscape of one of the most important topics of our time. "A concise, insightful and sophisticated guide to maintaining humane values in an age of new machines."-The New York Times Book Review "While we need to rewrite the rules of the twenty-first-century economy, Kevin's book is a great look at how people can do this on a personal level to always put humanity first."—Andrew Yang You are being automated. After decades of hype and sci-fi fantasies, artificial intelligence is leaping out of research labs and into the center of our lives. Automation doesn't just threaten our jobs. It shapes our entire human experience, with AI and algorithms influencing the TV shows we watch, the music we listen to, the beliefs we hold, and the relationships we form. And while the age-old debate over whether automation will destroy jobs rages on, an even more important question is being ignored: How can we be happy, successful humans in a world that is increasingly built by and for machines? In Futureproof: 9 Rules for Humans in the Age of Automation, New York Times technology columnist Kevin Roose lays out a hopeful, pragmatic vision for how we can thrive in the age of AI and automation. He shares the secrets of people and organizations that have survived previous waves of technological change, and explains what skills are necessary to stay ahead of today's intelligent machines, with lessons like • Be surprising, social, and scarce. • Resist machine drift. • Leave handprints. • Demote your devices. • Treat AI like a chimp army. Roose rejects the conventional wisdom that in order to succeed in the AI age, we have to become more like machines ourselves-hyper-efficient, data-driven workhorses. Instead, he says, we should focus on being more human, and doing the kinds of creative, inspiring, and meaningful things even the most advanced robots can't do. This open access book examines recent advances in how artificial intelligence (AI) and robotics have elicited widespread debate over their benefits and drawbacks for humanity. The emergent technologies have for instance implications within medicine and health care, employment, transport, manufacturing, agriculture, and armed conflict. While there has been considerable attention devoted to robotics/AI applications in each of these domains, a fuller picture of their connections and the possible consequences for our shared humanity seems needed. This volume covers multidisciplinary research, examines current research frontiers in Al/robotics and likely impacts on societal well-being, human – robot relationships, as well as the opportunities and risks for sustainable development and peace. The attendant ethical and religious dimensions of these technologies are addressed and implications for regulatory policies on the use and future development of Al/robotics technologies are elaborated.

An investigation into the assignment of moral responsibilities and rights to intelligent and autonomous machines of our own making. One of the enduring concerns of moral philosophy is deciding who or what is deserving of ethical consideration. Much recent attention has been devoted to the "animal question"—consideration of the moral status of nonhuman animals. In this book, David Gunkel takes up the "machine question": whether and to what extent intelligent and autonomous machines of our own making can be considered to have legitimate

moral responsibilities and any legitimate claim to moral consideration. The machine question poses a fundamental challenge to moral thinking, questioning the traditional philosophical conceptualization of technology as a tool or instrument to be used by human agents. Gunkel begins by addressing the question of machine moral agency: whether a machine might be considered a legitimate moral agent that could be held responsible for decisions and actions. He then approaches the machine question from the other side, considering whether a machine might be a moral patient due legitimate moral consideration. Finally, Gunkel considers some recent innovations in moral philosophy and critical theory that complicate the machine question, deconstructing the binary agent–patient opposition itself. Technological advances may prompt us to wonder if the science fiction of computers and robots whose actions affect their human companions (think of HAL in 2001: A Space Odyssey) could become science fact. Gunkel's argument promises to influence future considerations of ethics, ourselves, and the other entities who inhabit this world.

How to educate the next generation of college students to invent, to create, and to discover-filling needs that even the most sophisticated robot cannot. Driverless cars are hitting the road, powered by artificial intelligence. Robots can climb stairs, open doors, win Jeopardy, analyze stocks, work in factories, find parking spaces, advise oncologists. In the past, automation was considered a threat to low-skilled labor. Now, many high-skilled functions, including interpreting medical images, doing legal research, and analyzing data, are within the skill sets of machines. How can higher education prepare students for their professional lives when professions themselves are disappearing? In Robot-Proof, Northeastern University president Joseph Aoun proposes a way to educate the next generation of college students to invent, to create, and to discover-to fill needs in society that even the most sophisticated artificial intelligence agent cannot. A "robot-proof" education, Aoun argues, is not concerned solely with topping up students' minds with high-octane facts. Rather, it calibrates them with a creative mindset and the mental elasticity to invent, discover, or create something valuable to society—a scientific proof, a hip-hop recording, a web comic, a cure for cancer. Aoun lays out the framework for a new discipline, humanics, which builds on our innate strengths and prepares students to compete in a labor market in which smart machines work alongside human professionals. The new literacies of Aoun's humanics are data literacy, technological literacy, and human literacy. Students will need data literacy to manage the flow of big data, and technological literacy to know how their machines work, but human literacy-the humanities, communication, and design-to function as a human being. Life-long learning opportunities will support their ability to adapt to change. The only certainty about the future is change. Higher education based on the new literacies of humanics can equip students for living and working through change.

While horror films and science fiction have repeatedly warned of robots running amok, Kevin Warwick takes the threats out of the realm of fiction and into the real world, truly giving us something to worry about. Meeting skeptics head on, Warwick goes beyond his penetrating attacks on their assumptions and prejudices about what should be considered as intelligence to reveal what he has already achieved: building robots that communicate in their own language, share experience, teach each other lessons, and behave as they wish with regard to human beings. Now available for the first time in America, March of the Machines is part history of robotics, part futurism. It surveys the substantial advances made in artificial intelligence over the past century while looking

ahead to an increasingly uneasy relationship between humans and machines. Robots, autonomous vehicles, unmanned aerial vehicles, and smart factory, will significantly change human living style in digital society. Artificial Intelligence in Wireless Robotics introduces how wireless communications and networking technology enhances facilitation of artificial intelligence in robotics, which bridges basic multidisciplinary knowledge among artificial intelligence, wireless communications, computing, and control in robotics. A unique aspect of the book is to introduce applying communication and signal processing techniques to enhance traditional artificial intelligence in robotics and multi-agent systems. The technical contents of this book include fundamental knowledge in robotics, cyber-physical systems, artificial intelligence, statistical decision and Markov decision process, reinforcement learning, state estimation, localization, computer vision and multi-modal data fusion, robot planning, multi-agent systems, networked multi-agent systems, security and robustness of networked robots, and ultra-reliable and low-latency machine-to-machine networking. Examples and exercises are provided for easy and effective comprehension. Engineers wishing to extend knowledge in the robotics, AI, and wireless communications, would be benefited from this book. In the meantime, the book is ready as a textbook for senior undergraduate students or first-year graduate students in electrical engineering, computer engineering, computer science, and general engineering students. The readers of this book shall have basic knowledge in undergraduate probability and linear algebra, and basic programming capability, in order to enjoy deep reading. We know at least three different worlds. These worlds differ in the number of dimensions they are moving in. There is the 1-dimensional world of calculating, of mathematics. It always uses and combines numbers, which all can be symbolized by a line of a certain length. Then there is our 3-dimensional physical world of bodies and energies - it exists on the timeline always only in one moment, in the moment, which we call "now". But in our mind the world is existing at least 4-dimensional. That means, we not only see and realize the "now-moment" in which our body is existing, we can remember past times and we can imagine future or fantastic times. And our feelings are connected with our remembering or with planning and hoping for a imagined future. So our feeling needs the 4-dimensional mind. A calculating robot is constructed with 3-dimensional materials, and it is steering 3-dimensional materials. Will that robot be it able to see the world like a living mind does see the world? The first spontaneous answer may be: yes. But is it really so? Or is there a fundamental difference? This is the question the book deals about.

The New York Times–bestselling author of Rise of the Robots shows what happens as AI takes over our lives If you have a smartphone, you have AI in your pocket. AI is impossible to avoid online. And it has already changed everything from how doctors diagnose disease to how you interact with friends or read the news. But in Rule of the Robots, Martin Ford argues that the true revolution is yet to come. In this sequel to his prescient New York Times bestseller Rise of the Robots, Ford presents us with a striking vision of the very near future. He argues that AI is a uniquely powerful technology that is altering every dimension of human life, often for the better. For example, advanced science is being done by machines, solving devilish problems in molecular biology that humans could not, and AI can help us fight climate change or the next pandemic. It also has a capacity for profound harm. Deep fakes—AI-generated

audio or video of events that never happened—are poised to cause havoc throughout society. Al empowers authoritarian regimes like China with unprecedented mechanisms for social control. And Al can be deeply biased, learning bigoted attitudes from us and perpetuating them. In short, this is not a technology to simply embrace, or let others worry about. The machines are coming, and they won't stop, and each of us needs to know what that means if we are to thrive in the twenty-first century. And Rule of the Robots is the essential guide to all of it: both Al and the future of our economy, our politics, our lives.

How will artificial intelligence change our world within twenty years? "This inspired collaboration between a pioneering technologist and a visionary writer of science fiction offers bold and urgent insights."-Yann LeCun, winner of the Turing Award; chief Al scientist, Facebook "Amazingly entertaining . . . Lee and Chen take us on an immersive trip through the future. . . . Eye-opening."—Mark Cuban AI will be the defining development of the twenty-first century. Within two decades, aspects of daily human life will be unrecognizable. AI will generate unprecedented wealth, revolutionize medicine and education through human-machine symbiosis, and create brand-new forms of communication and entertainment. In liberating us from routine work, however, AI will also challenge the organizing principles of our economic and social order. Meanwhile, AI will bring new risks in the form of autonomous weapons and smart technology that inherits human bias. AI is at a tipping point, and people need to wake up-both to AI's radiant pathways and its existential perils for life as we know it. In this provocative, utterly original work, Kai-Fu Lee, the former president of Google China and bestselling author of AI Superpowers, teams up with celebrated novelist Chen Qiufan to imagine our world in 2041 and how it will be shaped by AI. In ten gripping short stories, they introduce readers to an array of eye-opening 2041 settings, such as: • In San Francisco, the "job reallocation" industry emerges as deep learning AI causes widespread job displacement • In Tokyo, a music fan is swept up in an immersive form of celebrity worship based on virtual reality and mixed reality • In Mumbai, a teenage girl rebels when Al's crunching of big data gets in the way of romance • In Seoul, virtual companions with perfected natural language processing (NLP) skills offer orphaned twins new ways to connect • In Munich, a roque scientist draws on guantum computing, computer vision and other AI technologies in a revenge plot that imperils the world By gazing toward a not-so-distant horizon, AI 2041 offers urgent insights into our collective future—while reminding readers that, ultimately, humankind remains the author of its destiny.

The mobile robot systems described in this book were selected from among the best available implementations by leading universities and research laboratories. These are robots that have left the lab and been tested in natural and unknown environments. They perform many different tasks, from giving tours to collecting trash. Many have distinguished themselves (usually with first- or second-place finishes) at various indoor and outdoor mobile robot competitions. Each case study is self-contained and includes detailed descriptions of important algorithms, including pseudo-code. Thus this volume serves as a recipe book for the design of successful mobile robot applications. Common themes include navigation and mapping, computer vision, and architecture. Contributors Ronald Arkin, Tucker Balch, Michael Brady, Don Brutzman, Arno Bucken, R. James Firby, Erann Gat, Tony Healy, Ian Horswill, Housheng Hu, Sven Koenig, Kurt

Konolige David Kortenkamp, Dave Marco, Bob McGhee, Robin Murphy, Karen Myers, Illah Nourbakhsh, Peter Prokopowicz, Bill Schiller, Reid Simmons, Michael Swain, Sebastian Thrun

Copyright: 6ec641d61243d785631dcf93b37ae478