The Design Of High Performance Mechatronics los Press Design of Racing and High Performance Engines presents the basic principles involved in the design of high performance engines. Editor Joseph Harralson first compiled this collection of papers for an internal combustion engine design course he teaches at the California State University of Sacramento. A methodology for using domino logic in an ASIC design flow for graduate students, researchers, and circuit designers in industry. Analog design still has, unfortunately, a flavor of art. Art can be beautiful. However, art in itself is difficult to teach to students and difficult to transfer from experienced analog designers to new trainee designers in companies. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References aims to systemize analog design. The use of orthogonalization of the design of the fundamental quality aspects (noise, distortion, and bandwidth) and hierarchy in the subsequent design steps, enables designers to achieve high-performance designs, in a relatively short time. As a result of the systematic design procedure, the effect of design decisions on the circuit performance is made clear. Additionally, the use of resources for reaching a specified performance is tracked. This book, therefore, describes the structured electronic design of high-performance harmonic oscillators and bandgap references. The structured design of harmonic oscillators includes the maximization of the carrier-to- noise ratio by means of tapping, i.e. an impedance adaption method for noise matching. The bandgap reference, a popular implementation of a voltage reference, is studied via the unusual concept of the linear combination of base-emitter voltages. The presented method leads to the design of high-performance references in CMOS and Bipolar technology. Using this concept, on a high level of abstraction the quality with respect to, for instance, noise and power-supply rejection can be identified. In this book, it is shown with several design examples that this method provides an excellent starting point for the design of high-performance bandgap references. Auxiliary to the harmonic-oscillator and bandgap reference design are the negative- feedback amplifiers. In this book the systematic design of the dynamic behavior is emphasized. By means of the identification of the dominant poles, it is possible to give an upper limit of the attainable bandwidth, even before the real frequency compensation is accomplished. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References is a valuable book for researchers and designers, as well as students in the field of analog design. It helps both the experienced and trainee designer to come to grips with the design of analog circuits. The presented method is illustrated by several well- described design examples. Looks at the combustion basics of fuel injection engines and offers information on such topics as VE equation, airflow estimation, setups and calibration, creating timing maps, and auxiliary output controls. This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems. Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella. Robert Munnig Schmidt is emeritus professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems. Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems. Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems. He also teaches Mechatronics at the Eindhoven University of Technology. Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and development of consumer and high-tech systems. Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella. Robert Munnig Schmidt is professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems. Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems. Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems. Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and development of consumer and high-tech systems. Explore the complete process of developing systems based on field-programmable gate arrays (FPGAs), including the design of electronic circuits and the construction and debugging of prototype embedded devices Key Features Learn the basics of embedded systems and real-time operating systems Understand how FPGAs implement processing algorithms in hardware Design, construct, and debug custom digital systems from scratch using KiCad Book Description Modern digital devices used in homes, cars, and wearables contain highly sophisticated computing capabilities composed of embedded systems that generate, receive, and process digital data streams at rates up to multiple gigabits per second. This book will show you how to use Field Programmable Gate Arrays (FPGAs) and high-speed digital circuit design to create your own cutting-edge digital systems. Architecting High-Performance Embedded Systems takes you through the fundamental concepts of embedded systems, including real-time operation and the Internet of Things (IoT), and the architecture and capabilities of the latest generation of FPGAs. Using powerful free tools for FPGA design and electronic circuit design, you'll learn how to design, build, test, and debug highperformance FPGA-based IoT devices. The book will also help you get up to speed with embedded system design, circuit design, hardware construction, firmware development, and debugging to produce a high-performance embedded device – a networkbased digital oscilloscope. You'll explore techniques such as designing four-layer printed circuit boards with high-speed differential signal pairs and assembling the board using surface-mount components. By the end of the book, you'll have a solid understanding of the concepts underlying embedded systems and FPGAs and will be able to design and construct your own sophisticated digital devices. What you will learn Understand the fundamentals of real-time embedded systems and sensors Discover the capabilities of FPGAs and how to use FPGA development tools Learn the principles of digital circuit design and PCB layout with KiCad Construct high-speed circuit board prototypes at low cost Design and develop high-performance algorithms for FPGAs Develop robust, reliable, and efficient firmware in C Thoroughly test and debug embedded device hardware and firmware Who this book is for This book is for software developers, IoT engineers, and anyone who wants to understand the process of developing highperformance embedded systems. You'll also find this book useful if you want to learn about the fundamentals of FPGA development and all aspects of firmware development in C and C++. Familiarity with the C language, digital circuits, and electronic soldering is necessary to get started. Passive House Details introduces the concepts, principles, and design processes of building ultralow-energy buildings. The objective of this book is to provide design goals, research, analysis, systems, details, and inspiring images of some of the most energy-efficient, carbon-neutral, healthy, and satisfying buildings currently built in the region. Other topics included: heat transfer, moisture management, performance targets, and climatic zones. Illustrated with more than 375 color images, the book is a visual catalog of construction details, materials, and systems drawn from projects contributed from forty firms. Fourteen in-depth case studies demonstrate the most energy-efficient systems for foundations, walls, floors, roofs, windows, doors, and more. PhD Dissertation The availability and capabilities of present-day technology suggest that legged robots should be able to physically outperform their biological counterparts. This thesis revolves around the philosophy that the observed opposite is caused by over-complexity in legged robot design, which is believed to substantially suppress design for highperformance. In this dissertation a design philosophy is elaborated with a focus on simple but high performance design. This philosophy is governed by various key points, including holistic design, technology-inspired design, machine and behaviour co-design and design at the performance envelope. This design philosophy also focuses on improving progress in robot design, which is inevitably complicated by the aspire for high performance. It includes an approach of iterative design by trial-and-error, which is believed to accelerate robot design through experience. This thesis mainly focuses on the case study of Skippy, a fully autonomous monopedal balancing and hopping robot. Skippy is maximally simple in having only two actuators, which is the minimum number of actuators required to control a robot in 3D. Despite its simplicity, it is challenged with a versatile set of high-performance activities, ranging from balancing to reaching record jump heights, to surviving crashes from several meters and getting up unaided after a crash, while being built from off-theshelf technology. This thesis has contributed to the detailed mechanical design of Skippy and its optimisations that abide the design philosophy, and has resulted in a robust and realistic design that is able to reach a record jump height of 3.8m. Skippy is also an example of iterative design through trial-and-error, which has lead to the successful design and creation of the balancing-only precursor Tippy. High-performance balancing has been successfully demonstrated on Tippy, using a recently developed balancing algorithm that combines the objective of tracking a desired position command with balancing, as required for preparing hopping motions. This thesis has furthermore contributed to several ideas and theories on Skippy's road of completion, which are also useful for designing other high-performance robots. These contributions include (1) the introduction of an actuator design criterion to maximize the physical balance recovery of a simple balancing machine, (2) a generalization of the centre of percussion for placement of components that are sensitive to shock and (3) algebraic modelling of a non-linear high-gravimetric energy density compression spring with a regressive stress-strain profile. The activities performed and the results achieved have been proven to be valuable, however they have also delayed the actual creation of Skippy itself. A possible explanation for this happening is that Skippy's requirements and objectives were too ambitious, for which many complications were encountered in the decision-making progress of the iterative design strategy, involving trade-offs between exercising trial-and-error, elaborate simulation studies and the development of above-mentioned new theories. Nevertheless, from (1) the resulting realistic design of Skippy, (2) the successful creation and demonstrations of Tippy and (3) the contributed theories for high-performance robot design, it can be concluded that the adopted design philosophy has been generally successful. Through the case study design project of the hopping and balancing robot Skippy, it is shown that proper design for high physical performance (1) can indeed lead to a robot design that is capable of physically outperforming humans and animals and (2) is already very challenging for a robot that is intended to be very simple. This book describes how we can design and make efficient processors for high-performance computing, AI, and data science. Although there are many textbooks on the design of processors we do not have a widely accepted definition of the efficiency of a general-purpose computer architecture. Without a definition of the efficiency, it is difficult to make scientific approach to the processor design. In this book, a clear definition of efficiency is given and thus a scientific approach for processor design is made possible. In chapter 2, the history of the development of high-performance processor is overviewed, to discuss what quantity we can use to measure the efficiency of these processors. The proposed quantity is the ratio between the minimum possible energy consumption and the actual energy consumption for a given application using a given semiconductor technology. In chapter 3, whether or not this quantity can be used in practice is discussed, for many real-world applications. In chapter 4, general-purpose processors in the past and present are discussed from this viewpoint. In chapter 5, how we can actually design processors with near-optimal efficiencies is described, and in chapter 6 how we can program such processors. This book gives a new way to look at the field of the design of high-performance processors. As Web-based systems and e-commerce carry businesses into the 21st century, databases are becoming workhorses that shoulder each and every online transaction. For organizations to have effective 24/7 Web operations, they need powerhouse databases that deliver at peak performance-all the time. High Performance Web Databases: Design, Development, and Rovella Starr chronicles the life of Rovella Jackson. The main character marries into a loveless marriage at the young age of fourteen-years old. From the very beginning this union is deceptive and Regina has no intentions of preserving her sacred marriage vows. Soon, this loveless union begins to crumble; but deception remains the main ingredient in Rovella's life. Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella. Robert Munnig Schmidt is emeritus professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems. Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems. Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems. He also teaches Mechatronics at the Eindhoven University of Technology. Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and development of consumer and high-tech systems. Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present. Practical information on designing sustainable, energy-efficient building facades As energy and other natural resources are being depleted, it hasbecome clear that technologies and strategies that allow us tomaintain our satisfaction with interior environments whileconsuming less of these resources are major objectives ofcontemporary facade design. Sustainable Facades focuses onthe strategies and approaches for designing sustainable,high-performance building facades, and provides technical guidancefor architects and designers. This timely and useful guide presents strategies and technicalguidelines for designing environmentally sensitive,energy-efficient facades based on scientific principles. It provides climate-specific approaches for minimizing energyconsumption, analyzes the thermal behavior of different facadesystems and materials, and illustrates with case studies how theseapproaches have been implemented on architectural projects. It also discusses emerging facade technologies, materials, and systems. Topics covered in this unique and indispensable guideinclude: Climate-based design approaches for high-performance facades Characteristics of sustainable facades: energy efficiency, thermal behavior, and moisture resistance Designing for thermal comfort, lighting and glare control, and acoustic quality Emerging technologies in facade design, including smartmaterials, double-skin facades, and facades as energygenerators Case studies on building orientation and facade design, tectonic sun exposure control, external shading elements, andmore High-Performance Ignition Systems: Design, Build & Installis a completely updated guide to understanding automotive ignition systems, from old-school points and condensers to modern computer-controlled distributorless systems, and from bone-stock systems to highly modified. Principles of High-Performance Processor DesignFor High Performance Computing, Deep Neural Networks and Data ScienceSpringer Nature The book explores advanced building-facade daylighting design practices based on diverse energy and human-factor performance metrics. It also defines effective daylighting by rethinking the simplified approach to glazing and facade systems to incorporate the local climate and the needs of building occupants as critical drivers of building performance, design solutions and technological innovation. It discusses state-of-the-art approaches in the context of simulation-based design workflows, innovative technologies and real project case studies, all targeting low and net-zero energy solutions that enhance occupant comfort. Readers benefit from a comprehensive approach that improves the feedback loop between design intent and performance in use. The book is intended for architects, lighting designers, facade engineers, manufacturers and building owners/operators, as well as advanced students. Containing papers from the 2nd High Performance Design of Structures and Materials and the Optimum Design of Structures conference, following the success of a number of meetings since 1989, this book will be of interest to those in any engineering field. The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Most high performance structures require the development of a generation of new higher performance sustainable materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation problems of interest involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products. The development of new algorithms and the appearance of powerful commercial computer codes with easy to use graphical interfaces have created a fertile field for the incorporation of optimisation into the design process in all engineering disciplines. The book addresses the topic of design optimisation with welcomed contributions on numerical methods, different optimisation techniques and new software. Several of the topics covered are: Composite materials and structures; Material characterisation; Experiments and numerical analysis; Transformable structures; Environmentally friendly and sustainable structures; Evolutionary methods in optimisation; Aerospace structures; Biomechanics application and Pneumatic structures. Embedded Computing for High Performance: Design Exploration and Customization Using High-level Compilation and Synthesis Tools provides a set of real-life example implementations that migrate traditional desktop systems to embedded systems. Working with popular hardware, including Xilinx and ARM, the book offers a comprehensive description of techniques for mapping computations expressed in programming languages such as C or MATLAB to high-performance embedded architectures consisting of multiple CPUs, GPUs, and reconfigurable hardware (FPGAs). The authors demonstrate a domain-specific language (LARA) that facilitates retargeting to multiple computing systems using the same source code. In this way, users can decouple original application code from transformed code and enhance productivity and program portability. After reading this book, engineers will understand the processes, methodologies, and best practices needed for the development of applications for high-performance embedded computing systems. Focuses on maximizing performance while managing energy consumption in embedded systems Explains how to retarget code for heterogeneous systems with GPUs and FPGAs Demonstrates a domain-specific language that facilitates migrating and retargeting existing applications to modern systems Includes downloadable slides, tools, and tutorials This book presents a series of significant methods and examples for the design of sustainable intelligent facades in a variety of contexts. Emphasis is placed on how intelligence has been applied for successful energy-saving efforts in the planning of building envelopes. Readers will find essential information on the core principles involved in designing, calculating and organizing intelligent facades according to the need for a new or retrofitted building. Not only are different materials and technologies considered, but also efficient ways to combine them according to user needs and other project-specific constraints. Illustrations, tables and graphs accompany the text, clarifying the concepts discussed. Architects, facade consultants and all those interested in and energy-saving measures and improved indoor comfort will find this book useful not only as an introduction to the subject but also as a guide to achieving more responsive building methods. The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Addressing issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design, contributions highlight the latest developments in design, optimisation, manufacturing and experimentation. Also included are contributions on new software, numerical methods and different optimisation techniques. Optimisation problems of interest involve those related to size, shape and topology of structures and materials. Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation techniques have much to offer to those involved in the design of new industrial products. The formulation of optimum design has evolved from the time it was purely an academic topic, able now to satisfy the requirements of real life prototypes. The development of new algorithms and the appearance of powerful commercial computer codes, with easy to use graphical interfaces, have created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines. This proceedings volume is the first from a new edition of the High Performance Design of Structures and Materials and the Optimum Design of Structures conferences, which follows the success of a number of meetings that originated in 1989. Topics covered include: Composite materials & structures; Material characterisation; Experiments and numerical analysis; Steel structures; High performance concretes; Natural fibre composites; Transformable structures; Lightweight structures; Timber structures; Environmentally friendly and sustainable structures; Emerging structural applications; Optimisation in civil engineering; Evolutionary methods in optimisation; Shape and topology optimisation; Aerospace structures; Structural optimisation; Biomechanics application; Material optimisation; Life cost optimisation; Intelligence structures and smart materials. High-Performance Data Network Design contains comprehensive coverage of network design, performance, and availability. Tony Kenyon provides the tools to solve medium- to large-scale data network design problems from the ground up. He lays out a practical and systematic approach that integrates network planning, research, design, and Page 9/14 deployment, using state-of-the-art techniques in performance analysis, cost analysis, simulation, and topology modeling. The proliferation and complexity of data networks today is challenging our ability to design and manage them effectively. A new generation of Internet, e-commerce, and multimedia applications has changed traditional assumptions on traffic dynamics, and demands tight quality of service and security guarantees. These issues, combined with the economics of moving large traffic volumes across international backbones, mean that the demands placed on network designers, planners, and managers are now greater than ever before. High-Performance Data Network Design is a "must have" for anyone seriously involved in designing data networks. Together with the companion volume, Data Networks: Routing, Security, and Performance Optimization, this book gives readers the guidance they need to plan, implement, and optimize their enterprise infrastructure. Provides real insight into the entire design process. Includes basic principles, practical advice, and examples of design for industrial-strength enterprise data networks. Integrates topics often overlooked—backbone optimization, bottleneck analysis, simulation tools, and network costing CEO of E3 Solutions Don Rheem offers managers and senior leaders deep insights into what drives employee performance from a brain-based perspective. Thirve by Design introduces you to the triggers of exemplary workplace behavior at a neurological level. Tapping into these triggers leads to increased productivity, well being, accountability, and retention. Business failure is not limited to start ups. Industry Watch (published by BDO Stoy Hayward, an accounting firm) 'predicts that 17,043 businesses will fail (in the UK) in 2006, a further 4 per cent increase from 2005'. In America between 1990 and 2000, there were over 6.3 million business start-ups and over 5.7 million business shut-downs. Risk of failure can be greatly reduced through effective organizational design that encourages high performance and adaptability to changing circumstances. Organization design is a straightforward business process but curiously managers rarely talk about it and even more rarely take steps to consciously design or redesign their business for success. This new Economist guide explores the five principles of effective organization design, which are that it must be: driven by the business strategy and the operating context (not by a new IT system, a new leader wanting to make an impact, or some other non-business reason). involve holistic thinking about the organization be for the future rather than for now not to be undertaken lightly - it is resource intensive even when going well be seen as a fundamental process not a repair job. (Racing cars are designed and built. They are then kept in good repair.) Is Responsive Web Design (RWD) slowing your site down? It doesn't have to. With this concise book, you'll learn practical techniques for improving performance with RWD, including a default set of guidelines you can use as an easy starting point. Web performance researcher and evangelist Guy Podjarny walks you through several existing solutions for dealing with RWD performance problems, and offers advice for choosing optimizations that will be most useful for your needs. RWD performance problems stem from excessive downloads of resources, including images, JavaScript and CSS, and HTML—downloads designed to let your web application adapt to different screen sizes. Podjarny presents a series of increasingly larger-scope solutions to each issue, including client-side techniques and RESS (Responsive + Server Side Components). Address performance issues by starting with Podjarny's default guidelines Use a JavaScript image loader and an image transcoding service to create Responsive Images Reduce JavaScript and CSS downloads with asynchronous scripts, conditional loading, and multi-viewport CSS Prioritize resources to avoid excess content in RWD and defer the load of any content that's not critical Explore server-side Adaptive Delivery and RESS solutions as an alternative to "pure" RWD Guy Podjarny, or Guypo for short, is the Chief Technology Officer (CTO) of Akamai's Web Experience business unit. This new color edition is essential for the enthusiast who wants to get the most performance out of this new engine design but is only familiar with the older Chevy small-blocks. Covered is everything you need to know about these engines, including the difficult engine removal and installation, simple engine bolt-ons, electronic controls for the Generation III engine, and detailed engine builds at four different power levels. This book provides readers with a variety of algorithms and software tools, dedicated to the physical design of through-silicon-via (TSV) based, three-dimensional integrated circuits. It describes numerous "manufacturing-ready" GDSII-level layouts of TSV-based 3D ICs developed with the tools covered in the book. This book will also feature sign-off level analysis of timing, power, signal integrity, and thermal analysis for 3D IC designs. Full details of the related algorithms will be provided so that the readers will be able not only to grasp the core mechanics of the physical design tools, but also to be able to reproduce and improve upon the results themselves. This book will also offer various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the physical design process. Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker The interest for :I:~ modulation-based NO converters has significantly increased in the last years. The reason for that is twofold. On the one hand, unlike other converters that need accurate building blocks to obtain high res olution, :I:~ converters show low sensitivity to the imperfections of their building blocks. This is achieved through extensive use of digital signal pro cessing - a desirable feature regarding the implementation of NO interfaces in mainstream CMOS technologies which are better suited for implementing fast, dense, digital circuits than accurate analog circuits. On the other hand, the number of applications with industrial interest has also grown. In fact, starting from the earliest in the audio band, today we can find :I:~ converters in a large variety of NO interfaces, ranging from instrumentation to commu nications. These advances have been supported by a number of research works that have lead to a considerably large amount of published papers and books cov ering different sub-topics: from purely theoretical aspects to architecture and circuit optimization. However, so much material is often difficultly digested by those unexperienced designers who have been committed to developing a :I:~ converter, mainly because there is a lack of methodology. In our view, a clear methodology is necessary in :I:~ modulator design because all related tasks are rather hard. This book focuses on the theoretical and practical aspects of parallel programming systems for today's high performance multi- This book rocuses on the theoretical and practical aspects of parallel programming systems for today's high performance multicore processors and discusses the efficient implementation of key algorithms needed to implement parallel programming models. Such implementations need to take into account the specific architectural aspects of the underlying computer architecture and the features offered by the execution environment. This book briefly reviews key concepts of modern computer architecture, focusing particularly on the performance of parallel codes as well as the relevant concepts in parallel programming models. The book then turns towards the fundamental algorithms used to implement the parallel programming models and discusses how they interact with modern processors. While the book will focus on the general mechanisms, we will mostly use the Intel processor architecture to exemplify the implementation concepts discussed but will present other processor architectures where appropriate. All algorithms and concepts are discussed in an easy to understand way with many illustrative examples, figures, and source code fragments. The target audience of the book is students in Computer Science who are studying compiler construction, parallel programming, or programming systems. Software developers who have an interest in the core algorithms used to implement a parallel runtime system, or who need to educate themselves for projects that require the algorithms and concepts discussed in this book will also benefit from reading it. Engineering of High-Performance Textiles discusses the fiber-to-fabric engineering of various textile products. Each chapter focuses on practical guidelines and approaches for common issues in textile research and development. The book discusses high-performance fibers and yarns before presenting the engineering fabrics and architectures needed for particular properties required of high-performance textiles. Properties covered include moisture absorption, pilling resistant knitwear, fire retardant fabrics, camouflage fabrics, insect repellent fabrics, filtration, and many more. Coordinated by two highly distinguished editors, this book is a practical resource for all those engaged in textile research, development and production, for both traditional and new-generation textile products, and for academics involved in research into textile science and technology. Offers a range of perspectives on high-performance textiles from an international team of authors with diverse expertise in academic research, textile development and manufacture Provides systematic and comprehensive coverage of the topic from fabric construction, through product development, to the range of current and potential applications that exploit high-performance textile technology Led by two high-profile editors with many years' experience in engineering high-performance textiles The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise Both professionals and students are increasingly committed to achieving high-performance metrics in the design, construction and operation of residential buildings. This book responds to this demand by offering a comprehensive guide which features: architectural innovations in building skin technologies which make lighter more transparent buildings high performing energy-free architectural design principles and advances in building-integrated photovoltaics essential engineering principles, controls and approaches to simulation for achieving net zero the advantages of integrated design in residential construction and the challenges and opportunities it engenders detailed case studies of innovative homes which have incorporated low-energy design solutions, new materials, alternative building assemblies, digital fabrication, integrated engineering systems and operational controls. Divided into four parts, the book discusses the requisite AEC (Architecture, Engineering and Construction) knowledge needed when building a high-performance home. It also communicates this information across four case studies, which provide the reader with a thorough overview of all aspects to be considered in the design and construction of sustainable homes. With contributions from experts in the field, the book provides a well-rounded and multi-faceted approach. This book is essential reading for students and professionals in design, architecture, engineering (civil, mechanical and electrical), construction and energy management. The story of the building of the Adam Joseph Lewis Center at Oberlin College in the context of ecological design, institutional learning, and the green campus movement. Are memory applications more critical than they have been in the past? Yes, but even more critical is the number of designs and the sheer number of bits on each design. It is assured that catastrophes, which were avoided in the past because memories were small, will easily occur if the design and test engineers do not do their jobs very carefully. High Performance Memory Testing: Design Principles, Fault Modeling and Self Test is based on the author's 20 years of experience in memory design, memory reliability development and memory self test. High Performance Memory Testing: Design Principles, Fault Modeling and Self Test is written for the professional and the researcher to help them understand the memories that are being tested. The authors present readers with a compelling, one-stop, advanced system perspective on the intrinsic issues of digital system design. This invaluable reference prepares readers to meet the emerging challenges of the device and circuit issues associated with deep submicron technology. It incorporates future trends with practical, contemporary methodologies. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications. How prepared are you to build fast and efficient web applications? This eloquent book provides what every web developer should know about the network, from fundamental limitations that affect performance to major innovations for building even more powerful browser applications—including HTTP 2.0 and XHR improvements, Server-Sent Events (SSE), WebSocket, and WebRTC. Author Ilya Grigorik, a web performance engineer at Google, demonstrates performance optimization best practices for TCP, UDP, and TLS protocols, and explains unique wireless and mobile network optimization requirements. You'll then dive into performance characteristics of technologies such as HTTP 2.0, client-side network scripting with XHR, real-time streaming with SSE and WebSocket, and P2P communication with WebRTC. Deliver superlative TCP, UDP, and TLS performance Speed up network performance over 3G/4G mobile networks Develop fast and energy-efficient mobile applications Address bottlenecks in HTTP 1.x and other browser protocols Plan for and deliver the best HTTP 2.0 performance Enable efficient real-time streaming in the browser Create efficient peer-to-peer videoconferencing and low-latency applications with real-time WebRTC transports Copyright: 4820b8bd000e3c1db20c679cb5315dbb