Reliability Characterisation Of Electrical And Electronic Systems Woodhead Publishing Series In Electronic And Optical Materials

Magnetic nanowires and microwires are key tools in the development of enhanced devices for information technology (memory and data processing) and sensing. Offering the combined characteristics of high density, high speed, and non-volatility, they facilitate reliable control of the motion of magnetic domain walls; a key requirement for the development of novel classes of logic and storage devices. Part One introduces the design and synthesis of magnetic nanowires and microwires, reviewing the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition combinations, focused-electron/ion-beam-induced deposition, chemical vapour transport, quenching and drawing and magnetic interactions. Magnetic and transport properties, alongside domain walls, in nano- and microwires are then explored in Part Two, before Part Three goes on to explore a wide range of applications for magnetic nano- and microwire devices, including memory, microwave and electrochemical applications, in addition to thermal spin

polarization and configuration, magnetocalorific effects and Bloch point dynamics. Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications Combines the expertise of specialists from around the globe to give a broad overview of current and future trends

This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices. The text describes the reliability behavior of electrical and electronic systems. It takes an empirical scientific approach to reliability engineering to facilitate a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation. After introducing the fundamentals and background to reliability theory, the text moves on to describe the methods of reliability analysis and charactersation across a wide range of applications. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating Page 2/30

conditions, failure mechanisms and the need for testing for a more realistic characterisation

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, Page 3/30

ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

An authoritative guide to new product development for early career engineers and engineering students Managing Technology and Product Development Programmes provides a clear framework and essential guide for understanding how research ideas and new technologies are developed into reliable products which can sold successfully in the private or business marketplace. Drawing on the author's practical experience in a variety of engineering industries, this important book fills a gap in the product development literature. It links back into the engineering processes that drives the actual creation of products and represents the practical realisation of innovation. Comprehensive in scope, the book reviews all elements of new product development. The topics discussed range from the economics of new product development, the quality processes, prototype development, manufacturing processes, determining customer needs, value proposition and testing. Whilst the book is designed with an emphasis on engineered products, the principles can be applied to other fields as well. This

important resource: Takes a holistic approach to new product development Links technology and product development to business needs Structures technology and product development from the basic idea to the completed off-the-shelf product Explores the broad range of skills and the technical expertise needed when developing new products Details the various levels of new technologies and products and how to track where they are in the development cycle Written for engineers and students in engineering, as well as a more experienced audience, and for those funding technology development, Managing Technology and Product Development Programmes offers a thorough understanding of the skills and information engineers need in order to successfully convert ideas and technologies into products that are fit for the marketplace.

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then Page 5/30

goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nanomanufacturing by exploring its potential use in a range of fields Electronic Enclosures, Housings and Packages considers the problem of heat management for electronics from an encasement perspective. It addresses enclosures and their applications for industrial electronics, as well as LED lighting solutions for stationary and mobile markets. The book introduces fundamental concepts and defines dimensions of success in electrical enclosures. Other chapters discuss environmental considerations, shielding, standardization, materials selection, thermal management, product design principles,

manufacturing techniques and sustainability. Final chapters focus on business fundamentals by outlining successful technical propositions and potential future directions. Introduces the concepts of materials recycling and sustainability to electronic enclosures Provides thorough coverage of all technical aspects relating to the design and manufacturing of electronic packaging Includes practical information on environmental considerations, shielding, standardization, materials selection, and more

Degradation is apparent in all things and is fundamental to both manufactured and natural objects. It is often described by the second law of thermodynamics, where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and gives a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student, as well as the professional engineer and scientist, in the importance of physics of degradation. The aim of The Physics of Degradation in Engineered Materials and Devices is to bridge the gap between published textbooks on the fundamental science of degradation

phenomena and published research on the engineering science of actual fabricated materials and devices. A history of the observation and understanding of physics of degradation is presented and the fundamentals and principles of thermodynamics and entropy are extensively discussed. This is the focus of this book, with an extended chapter by Alec Feinberg on equilibrium thermodynamic damage and non-equilibrium thermodynamic damage. It concludes with two particular technologies to give examples of areas of application. Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-onoxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency Page 8/30

applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. Covers SOI transistors and circuits, as well as manufacturing processes and reliability Looks at applications such as memory, power devices, and photonics Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of

applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential Features cutting-edge examples of biomimetic technologies employed for a broad range of applications Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. Covers electrodynamics, quantum

mechanics and computation as these relate to nanophotonics Reviews materials, fabrication and characterization techniques for nanophotonics Describes applications of the technology such as lasers, LEDs and photodetectors Biological Identification provides a detailed review of, and potential future developments in, the technologies available to counter the threats to life and health posed by natural pathogens, toxins, and bioterrorism agents. Biological identification systems must be fast, accurate, reliable, and easy to use. It is also important to employ the most suitable technology in dealing with any particular threat. This book covers the fundamentals of these vital systems and lays out possible advances in the technology. Part one covers the essentials of DNA and RNA sequencing for the identification of pathogens, including next generation sequencing (NGS), polymerase chain reaction (PCR) methods, isothermal amplification, and bead array technologies. Part two addresses a variety of approaches to making identification systems portable, tackling the special requirements of smaller, mobile systems in fluid movement, power usage, and sample preparation. Part three focuses on a range of optical methods and their advantages. Finally, part four describes a unique approach to sample preparation and a promising approach to identification using mass spectroscopy. Biological Identification is a useful resource for academics and engineers involved in the microelectronics and sensors industry, and for companies, medical organizations and military bodies looking for biodetection solutions. Covers DNA sequencing of pathogens, lab-on-chip, and portable

systems for biodetection and analysis Provides an in-depth description of optical systems and explores sample preparation and mass spectrometry-based biological analysis

Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. Sensor Technologies for Civil Infrastructure Volume I provides an overview of sensor hardware and its use in data collection. The first chapters provide an introduction to sensing for structural performance assessment and health monitoring, and an overview of commonly used sensors and their data acquisition systems. Further chapters address different types of sensor including piezoelectric transducers, fiber optic sensors, acoustic emission sensors, and electromagnetic sensors, and the use of these sensors for assessing and monitoring civil infrastructures. Developments in technologies applied to civil infrastructure performance assessment are also discussed, including radar technology, micro-electro-mechanical systems (MEMS) and nanotechnology. Sensor Technologies for Civil Infrastructure provides a standard reference for structural and civil engineers, electronics engineers, and academics with an interest in the field. Describes sensing hardware and data collection, covering a variety of sensors Examines fiber optic systems, acoustic emission, piezoelectric sensors, electromagnetic sensors, ultrasonic methods, and radar and millimeter wave technology Covers strain gauges, micro-electro-mechanical systems

(MEMS), multifunctional materials and nanotechnology for sensing, and vision-based sensing and lasers

This book covers modern analog components, their characteristics, and interactions with process parameters. It serves as a comprehensive guide, addressing both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. Based on the authors' extensive experience in the development of analog devices, this book is intended for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science. Enables engineers to understand analog device physics, and discusses important relations between process integration, device design, component characteristics, and reliability; Describes in stepby-step fashion the components that are used in analog designs, the particular characteristics of analog components, while comparing them to digital applications; Explains the second-order effects in analog devices, and trade-offs between these effects when designing components and developing an integrated process for their manufacturing.

Industrial Tomography: Systems and Applications thoroughly explores the important tomographic techniques of industrial tomography, also discussing image reconstruction,

systems, and applications. The text presents complex processes, including the way three-dimensional imaging is used to create multiple cross-sections, and how computer software helps monitor flows, filtering, mixing, drying processes, and chemical reactions inside vessels and pipelines. Readers will find a comprehensive discussion on the ways tomography systems can be used to optimize the performance of a wide variety of industrial processes. Provides a comprehensive discussion on the different formats of tomography Includes an excellent overview of image reconstruction using a wide range of applications Presents a comprehensive discussion of tomography systems and their application in a wide variety of industrial processes

Reliability Characterisation of Electrical and Electronic SystemsElsevier

Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and

characterization of semiconductor nanowires Covers a broad range of applications across a number of fields

The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-theart material and device development, and practical nitride-based LED design considerations. Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and guantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GalnN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting. Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors. Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-Page 15/30

based LED design considerations Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting

This program examined the barrier materials which were available in late 1978. Screening, electrical characterization and step stress testing were performed on six different processes power Schottky rectifiers. The proposed drafts of MIL-S-19500 detail specifications were prepared as part of this project. The data, proposed limits and related discussions are presented in this report. (Author).

High Performance Silicon Imaging covers the fundamentals of silicon image sensors, with a focus on existing performance issues and potential solutions. The book considers several applications for the technology as well. Silicon imaging is a fast growing area of the semiconductor industry. Its use in cell phone cameras is already well established, and emerging applications include web, security, automotive, and digital cinema cameras. Part one begins with a review of the fundamental principles of photosensing and the operational principles of silicon image sensors. It then focuses in on charged coupled device (CCD) image sensors and complementary metal oxide semiconductor (CMOS) image sensors. The performance issues considered include image quality, sensitivity, data transfer rate, system level integration, rate of power consumption, and the potential for 3D imaging. Part two then discusses how CMOS technology can be used in a range of areas, including in mobile devices, image sensors for automotive applications, sensors for several forms of scientific imaging, and sensors for medical applications. High Performance Silicon Imaging is an excellent resource

for both academics and engineers working in the optics, photonics, semiconductor, and electronics industries. Covers the fundamentals of silicon-based image sensors and technical advances, focusing on performance issues Looks at image sensors in applications such as mobile phones, scientific imaging, TV broadcasting, automotive, and biomedical applications Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds. Reviews the different types of DTN and shows how they can be applied in satellite and deep-space communications, vehicular and underwater communications, and during large-scale disasters Considers the potential for rapid selection and dissemination of urgent messages is considered Reviews the breadth of areas in which DTN is already providing solutions and the prospects for its wider adoption

Graphene: Properties, Preparation, Characterisation and Devices reviews the preparation and properties of this exciting material. Graphene is a single-atom-thick sheet of carbon with properties, such as the ability to conduct light and electrons, which could make it potentially suitable for a variety of devices and applications, including electronics, sensors, and photonics. Chapters in part one explore the preparation of , including epitaxial growth of graphene on

silicon carbide, chemical vapor deposition (CVD) growth of graphene films, chemically derived graphene, and graphene produced by electrochemical exfoliation. Part two focuses on the characterization of graphene using techniques including transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy. These chapters also discuss photoemission of low dimensional carbon systems. Finally, chapters in part three discuss electronic transport properties of graphene and graphene devices. This part highlights electronic transport in bilayer graphene, single charge transport, and the effect of adsorbents on electronic transport in graphene. It also explores graphene spintronics and nano-electromechanics (NEMS). Graphene is a comprehensive resource for academics, materials scientists, and electrical engineers working in the microelectronics and optoelectronics industries. Explores the graphene preparation techniques, including epitaxial growth on silicon carbide, chemical vapor deposition (CVD), chemical derivation, and electrochemical exfoliation Focuses on the characterization of graphene using transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy A comprehensive resource for academics, materials scientists, and electrical engineers

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it

explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photoacoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including cavitybased absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry Diamond nitrogen vacancy (NV) color centers can transform quantum information science into practical quantum information technology, including fast, safe computing. Quantum Information Processing with Diamond looks at the principles of quantum information science, diamond materials, and their applications. Part one provides an introduction to quantum information

processing using diamond, as well as its principles and fabrication techniques. Part two outlines experimental demonstrations of quantum information processing using diamond, and the emerging applications of diamond for quantum information science. It contains chapters on quantum key distribution, quantum microscopy, the hybridization of quantum systems, and building quantum optical devices. Part three outlines promising directions and future trends in diamond technologies for quantum information processing and sensing. Quantum Information Processing with Diamond is a key reference for R&D managers in industrial sectors such as conventional electronics, communication engineering, computer science, biotechnology, quantum optics, quantum mechanics, quantum computing, quantum cryptology, and nanotechnology, as well as academics in physics, chemistry, biology, and engineering. Brings together the topics of diamond and quantum information processing Looks at applications such as quantum computing, neural circuits, and in vivo monitoring of processes at the molecular scale

Industrial Wireless Sensor Networks: Monitoring, Control and Automation explores the explosive growth that has occurred in the use of wireless sensor networks in a variety of applications during the last few years. As wireless technology can reduce costs, increase productivity, and ease maintenance, the book looks at the progress in standardization efforts regarding reliability, security, performance, power consumption, and integration. Early sections of the book discuss issues such as media access control (MAC), antenna design and site survey, energy harvesting, and explosion-proof design. Subsequent sections present WSN standards, including ISA100, ZigBeeTM, WifiTM, WirelessHARTTM and 6loWPAN, and the applications of WSNs in the oil and gas, chemical, food, and nuclear power industries. Reviews

technologies and standards for industrial wireless sensor networks Considers particular applications for the technology and their ability to reduce costs, increase productivity, and ease maintenance Focuses on industry needs and standardization efforts regarding reliability, security, performance, power consumption, and integration.

Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications

explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. Reviews the properties and production of various flexible organic materials. Describes the integration technologies of flexible organic electronics and their manufacturing methods. Looks Page 22/30

at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.

Atomic thin two-dimensional (2D) materials are the thinnest forms of materials to ever occur in nature and have the potential to dramatically alter and revolutionize our material world. Some of the unique properties of these materials including wide photoresponse wavelength, passivated surfaces, strong interaction with incident light, and high mobility have created tremendous interest in photodetector application. This book provides a comprehensive state-of-the-art knowledge about photodetector technology in the range visible to infrared region using various 2D materials including graphene, transition metal dichalcogenides, III-V semiconductor, and so on. It consists of 10 chapters contributed by a team of experts in this exciting field. We believe that this book will provide new opportunities and guidance for the development of next-generation 2D photodetector.

Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications. A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and

trends concludes the book. Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries.

Composite Magnetoelectrics: Materials, Structures, and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them. Part two of the book looks at magnetoelectric devices. Applications include magnetic and current sensors, transducers for energy harvesting, microwave and millimeter wave devices, miniature antennas and medical imaging. The final chapter discusses progress towards magnetoelectric memory. Summarises clearly the theory behind magnetoelectric phenomena Strong coverage of fabrication and characterisation techniques Reviews a broad range of current and potential magnetoelectric devices

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics

components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties

This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices. The text describes the reliability behavior of electrical and electronic systems. It takes an empirical scientific approach to reliability engineering to facilitate a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation. After introducing the fundamentals and background to reliability theory, the text moves on to describe the methods of reliability analysis and charactersation across a wide range of applications. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation.

Nano-scale materials have unique electronic, optical, and chemical properties

which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant

improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging. Reviews materials, detector types and devices Addresses fabrication techniques, and the advantages and limitations and different types of photodetector Considers a range of application for this important technology Includes discussions of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, and more

This book includes both theoretical and practical aspects within optics, photonics and lasers. The book provides new methods, technologies, advanced prototypes, systems, tools and techniques as well as a general survey indicating future trends and directions. The main fields of this book are Optical scattering, plasmas technologies and simulation, photonic and optoelectronic sensors and devices, *Page 27/30*

optical fiber sensing and monitoring, image detection and Imaging solid state lasers and fiber lasers, and optical amplifiers. A wide range of optical materials is covered, from semiconductor based optical materials, optical crystals and optical glasses.

Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. Sensor Technologies for Civil Infrastructure Volume II provides an overview of sensor data analysis and case studies in assessing and monitoring civil infrastructures. Part one focuses on sensor data interrogation and decision making, with chapters on data management technologies, data analysis, techniques for damage detection and structural damage detection. Part two is made up of case studies in assessing and monitoring specific structures such as bridges, towers, buildings, dams, tunnels, pipelines, and roads. Sensor Technologies for Civil Infrastructure provides a standard reference for structural and civil engineers, electronics engineers, and academics with an interest in the field. Provides an in-depth examination of sensor data management and analytical techniques for fault detection and localization, looking at prognosis and life-cycle assessment Includes case studies in assessing structures such as bridges, buildings, super-tall towers, dams, tunnels, wind turbines, railroad tracks,

nuclear power plants, offshore structures, levees, and pipelines Part one of Machine-to-Machine (M2M) Communications covers machine-tomachine systems, architecture and components. Part two assesses performance management techniques for M2M communications. Part three looks at M2M applications, services, and standardization. Machine-to-machine communications refers to autonomous communication between devices or machines. This book serves as a key resource in M2M, which is set to grow significantly and is expected to generate a huge amount of additional data traffic and new revenue streams, underpinning key areas of the economy such as the smart grid, networked homes, healthcare and transportation. Examines the opportunities in M2M for businesses Analyses the optimisation and development of M2M communications Chapters cover aspects of access, scheduling, mobility and security protocols within M2M communications

This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the

book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.

Copyright: 62b96dbbf9aeea57d0f6786e90b8593f