Pushdown Automata Examples Solved Examples Jinxt

This book constitutes the refereed proceedings of the 16th International Conference on Rewriting Techniques and Applications, RTA 2005, held in Nara, Japan in April 2005. The 29 revised full papers and 2 systems description papers presented together with 5 invited articles were carefully reviewed and selected from 79 submissions. All current issues in Rewriting are addressed, ranging from foundational and methodological issues to applications in various contexts; due to the fact that the first RTA conference was held 20 years ago, the conference offered 3 invited historical papers 2 of which are included in this proceedings.

This book constitutes the refereed proceedings of the 17th International Symposium Fundamentals of Computation Theory, FCT 2009, held in Wroclaw, Poland in August 2009. The 29 revised full papers were carefully reviewed and selected from 67 submissions. The papers address all current topics in computation theory such as automata and formal languages, design and analysis of algorithms, computational and structural complexity, semantics, logic, algebra and categories in computer science, circuits and networks, learning theory, specification and verification, parallel and distributed systems, concurrency theory, cryptography and cryptograhic protocols, approximation and randomized algorithms, computational geometry, quantum computation and information, bio-inspired computation.

This classic book on formal languages, automata theory, and computational complexity has been updated to present theoretical concepts in a concise and straightforward manner with the increase of hands-on, practical applications. This new edition comes with Gradiance, an online assessment tool developed for computer science. Please note, Gradiance is no longer available with this book, as we no longer support this product.

This book constitutes the proceedings of the 15th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2012, held as part of the joint European Conference on Theory and Practice of Software, ETAPS 2012, which took place in Tallinn, Estonia, in March/April 2012. The 29 papers presented in this book together with two invited talks in full paper length were carefully reviewed and selected from 100 full paper submissions. The papers deal with theories and methods to support analysis, synthesis, transformation and verification of programs and software systems.

Data Structures & Theory of Computation
The book introduces the fundamental concepts of the theory of computation, formal languages and automata right from the basic building blocks to the depths of the subject. The book begins by giving prerequisites for the subject, like sets, relations and graphs, and all fundamental proof techniques. It proceeds forward to discuss advanced concepts like Turing machine, its language and construction, an illustrated view of the decidability and undecidability of languages along with

the post-correspondence problem. KEY FEATURES • Simple and easy-to-follow text • Complete coverage of the subject as per the syllabi of most universities • Discusses advanced concepts like Complexity Theory and various NP-complete problems • More than 250 solved examples

Now you can clearly present even the most complex computational theory topics to your students with Sipser's distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser's well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition's refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject's rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes

this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. Introduction to Languages and the Theory of Computation is an introduction to the theory of computation that emphasizes formal languages, automata and abstract models of computation, and computability; it also includes an introduction to computational complexity and NP-completeness. Through the study of these topics, students encounter profound computational questions and are introduced to topics that will have an ongoing impact in computer science. Once students have seen some of the many diverse technologies contributing to computer science, they can also begin to appreciate the field as a coherent discipline. A distinctive feature of this text is its gentle and gradual introduction of the necessary mathematical tools in the context in which they are used. Martin takes advantage of the clarity and precision of mathematical language but also provides discussion and examples that make the language intelligible to those just learning to read and speak it. The material is designed to be accessible to students who do not have a strong background in discrete mathematics, but it is also appropriate for students who have had some exposure to discrete math but whose skills in this area need to be consolidated and sharpened.

This classroom-tested and clearly-written textbook presents a focused guide to the conceptual foundations of compilation, explaining the fundamental principles and algorithms used for defining the syntax of languages, and for implementing simple translators. This significantly updated and expanded third edition has been enhanced with additional coverage of regular expressions, visibly pushdown languages, bottom-up and top-down deterministic parsing algorithms, and new grammar models. Topics and features: describes the principles and methods used in designing syntax-directed applications such as parsing and regular expression matching; covers translations, semantic functions (attribute grammars), and static program analysis by data flow equations; introduces an efficient method for string matching and parsing suitable for ambiguous regular expressions (NEW); presents a focus on extended BNF grammars with their general parser and with LR(1) and LL(1) parsers (NEW); introduces a parallel parsing algorithm that exploits multiple processing threads to speed up syntax analysis of large files; discusses recent formal models of input-driven automata and languages (NEW); includes extensive use of theoretical models of automata, transducers and formal grammars, and describes all algorithms in pseudocode; contains numerous illustrative examples, and supplies a large set of exercises with Page 5/23

solutions at an associated website. Advanced undergraduate and graduate students of computer science will find this reader-friendly textbook to be an invaluable guide to the essential concepts of syntax-directed compilation. The fundamental paradigms of language structures are elegantly explained in terms of the underlying theory, without requiring the use of software tools or knowledge of implementation, and through algorithms simple enough to be practiced by paper and pencil.

Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth Page 6/23

century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]). These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into the subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suital le to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of

The theoretical underpinnings of computing form a standard part of almost every computer science curriculum. But the classic treatment of this material isolates it from the myriad ways in which the theory

them.

influences the design of modern hardware and software systems. The goal of this book is to change that. The book is organized into a core set of chapters (that cover the standard material suggested by the title), followed by a set of appendix chapters that highlight application areas including programming language design, compilers, software verification, networks, security, natural language processing, artificial intelligence, game playing, and computational biology. The core material includes discussions of finite state machines, Markov models, hidden Markov models (HMMs), regular expressions, context-free grammars, pushdown automata, Chomsky and Greibach normal forms, context-free parsing, pumping theorems for regular and contextfree languages, closure theorems and decision procedures for regular and context-free languages, Turing machines, nondeterminism, decidability and undecidability, the Church-Turing thesis, reduction proofs, Post Correspondence problem, tiling problems, the undecidability of first-order logic, asymptotic dominance, time and space complexity, the Cook-Levin theorem, NP-completeness, Savitch's Theorem, time and space hierarchy theorems, randomized algorithms and heuristic search. Throughout the discussion of these topics there are pointers into the application chapters. So, for example, the chapter that describes reduction proofs of undecidability has a link to the security

chapter, which shows a reduction proof of the undecidability of the safety of a simple protection framework.

This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first.

This book constitutes the refereed proceedings of the 12th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2009, held in York, UK, in March 2009, as part of ETAPS 2009, the European Joint Conferences on Theory and Practice of Software.

The 30 revised full papers presented together with two invited talks were carefully reviewed and selected from 102 full paper submissions. The topics addressed are semantics, logics and automata, algebras, automata theory, processes and models. security, probabilistic and quantitative models, synthesis, and program analysis and semantics. "Intended as an upper-level undergraduate or introductory graduate text in computer science theory," this book lucidly covers the key concepts and theorems of the theory of computation. The presentation is remarkably clear; for example, the "proof idea," which offers the reader an intuitive feel for how the proof was constructed, accompanies many of the theorems and a proof. Introduction to the Theory of Computation covers the usual topics for this type of text plus it features a solid section on complexity theory--including an entire chapter on space complexity. The final chapter introduces more advanced topics, such as the discussion of complexity classes associated with probabilistic algorithms.

This book has very simple and practical approach to make the understood the concept of automata theory and languages well. There are many solved descriptive problems and objective (multiple choices) questions, which is a unique feature of this book. The multiple choice questions provide a very good platform for the readers to prepare for various competitive exams. This book constitutes the refereed proceedings of the 4th International Workshop on Reversible Computation, RC

2012, held in Copenhagen, Denmark, in July 2012. The 19 contributions presented in this volume were carefully reviewed and selected from 46 submissions. The papers cover theoretical considerations, reversible software and reversible hardware, and physical realizations and applications in quantum computing.

The book is meant for a wide range of students doing their undergraduation and postgraduation courses related to Computer Science. All the concepts are elaborated with illustrations. Algorithmic procedures are provided at the necessary locations. Numerous examples are given for similar but different kinds of problems. Problems similar to the examples are given as Exercises. Objective questions with solutions are given at the end of each chapter. The basic concepts of automata theory, various types of automata and their limitations are given with examples. Turing machines are also dealt with in this book and the execution of Turing machines is traced for better understanding. Classification of decidable and undecidable problems is dealt with in detail. The book will also be useful for students who are preparing for competitive examinations, SALIENT FEATURES OF THE BOOK " Detailed explanation of the concepts in formal languages and automata theory "Several pictorial representations for better understanding. " Simple stepwise procedure for designing finite and pushdown automata, designing Turing machines for recognizing languages and computing functions. " Tracing the execution of the automata and Turing machines designed. " Decidability and intractability are dealt with simple illustrations. "

About 350 solved problems, 200 exercise problems and 225 objective questions with answers. " Syllabus covered for Theory of Computation of B.E., B.Tech, BCA, MCA, M.Sc and M.E. of various universities. The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and again within each chapter the author starts at an elementary level, giving careful explanations and numerous examples and exercises, and then leads up to the research level. In this way he covers the basic theory as well as many nonstandard subjects. Thus the book serves as a textbook for both the beginner and the advances student, and also as a rich source for the expert. JFLAP: An Interactive Formal Languages and Automata

Package is a hands-on supplemental guide through formal languages and automata theory. JFLAP guides students interactively through many of the concepts in an automata theory course or the early topics in a compiler course, including the descriptions of algorithms JFLAP has implemented. Students can experiment with the concepts in the text and receive immediate feedback when applying these concepts with the accompanying software. The text describes each area of JFLAP and reinforces concepts with end-of-chapter exercises. In addition to JFLAP, this guide incorporates two other automata theory tools into JFLAP: JellRap and Pate. This text addresses some theoretical issues surrounding computer science. It provides an introduction to the theory of computation, and covers programming languages, finite state machines, grammars, Boolean circuits, computational complexity, feasible problems, and intractable problems.

Theory of computation is the scientific discipline concerned with the study of general properties of computation and studies the inherent possibilities and limitations of efficient computation that makes machines more intelligent and enables them to carry out intellectual processes. This book deals with all those concepts by developing the standard mathematical models of computational devices, and by investigating the cognitive and generative capabilities of such machines. The book emphasizes on mathematical reasoning and problem-solving techniques that penetrate computer science. Each

chapter gives a clear statement of definition and thoroughly discusses the concepts, principles and theorems with illustrative and other descriptive materials.?

This proceedings volume examines all major areas in computer science, mathematics (especially logic) and the physical sciences, especially computation, algorithms, complexity and computability theory. The organized and accessible format of Automata Theory and Formal Languages allows students to learn important concepts in an easy-to-understand, question-and-answer format. This portable learning tool has been designed as a one-stop reference for students to understand and master the subjects by themselves.

This book constitutes the strictly refereed postworkshop proceedings of the First International Workshop on Implementing Automata, WIA'96, held in London, Ontario, Canada, in August 1996. The volume presents 13 revised full papers together with an introduction and survey. The papers explore the use of software tools in formal language theory; various issues involved in the implementation of automata of all types are discussed. As the first book focusing on implementing automata, this collection of research papers defines the state of the art in the area. Generally speaking, the book advocates the practice of theory in computer science.

Learn to identify the implementation of Discrete
Page 14/23

Structure and Theory of Automata in a myriad of applications used in day to day lifeKey Featuresa-Learn how to write an argument using logical notation and decide if the argument is valid or not valid.a- Learn how to use the concept of different data structures (stacks, queues, sorting concept, etc.) in the computer science field.a- Learn how to use Automata Machines like FSM, Pushdown automata, Turing machine, etc. in various applications related to computer science through suitable practical illustration.a- Learn how to implement the finite state machine using JFLAP (Java Formal Languages and Automata Package). Description This book's purpose is to provide a modern and comprehensive introduction to the subject of Discrete Structures and Automata Theory. Discrete structures, also called Discrete Mathematics, are an exciting and active subject, particularly due to its extreme relevance to both Mathematics and Computer Science and Algorithms. This subject forms a common foundation for rigorous Mathematical, Logical Reasoning and Proofs, as well as a formal introduction to abstract objects that are essential tools in an assortment of applications and effective computer implementations. Computing skills are now an integral part of almost all the Scientific fields, and students are very enthusiastic about being able to harness the full computing power of these tools. Further, this book also deep dives into Page 15/23

the Automata Theory with various examples that illustrate the basic concepts and is substantiated with multiple diagrams. The book's vital feature is that it contains the practical implementation of the Automata Machine example through the JFLAP Tool. Courses on Discrete Structures and Automata theory are offered at most universities and colleges. What will you learna- Understand the basic concepts of Sets and operations in Sets.a-Demonstrate different traversal techniques for Trees and Graphs.a- Deep dive into the concept of Mathematical Induction, Sets, Relations, Functions, Recursion, Graphs, Trees, Boolean Algebra, and Proof techniques.a- Understand the concept of Automata Machines in day to day life like the Elevator, Turnstile, Genetic Algorithms, Traffic lights, etc.a- Use the JFLAP tool to solve the various exercise problems related to automata theory. Who this book is for This book is a must-read to everyone interested in improving their concepts regarding Discrete Structure and Automata Theory. Table of Contents 1. Set Theory 2. Relations and Functions 3. Graph Theory 4. Trees 5. Algebraic Structure 6. Recursion and Recurrence Relations7. Sorting8. Queues9. Introduction 10. Finite Automata Theory 11. Theory of Machines 12. Regular Language 13. Grammar14, Pushdown Automata15, Cellular Automata16. Turning Machine17. Problems Solving Using JFLAP Tool18. Revision QuestionsAbout the Page 16/23

AuthorsDr. UMESH SEHGAL completed his Ph.D.,M.Phil. Computer Science and MCA. He held academic positions at the GNA University as an A.P. in FCS Department. He has achieved the Best Educationist Award in 2017. He has achieved the Indira Gandhi Education Excellence Award in 2017. He has achieved the Best Researcher Award in 2018-19. He has published several articles in leading International and National Computer science journals and has been an invited speaker at Wireless networks based lectures and conferences in the many universities and Institutes in India, Malaysia, China, and UAE.SUKHPREET KAUR GILL received the M.Tech. degree in Computer Science and Engineering from Guru Nanak Dev Engineering College, Ludhiana. She is currently working as Assistant Professor at GNA University Phagwara. She has achieved the Bright Educator Award 2019. She has published several articles in leading International and National Computer science iournals.

This Book Is Designed To Meet The Syllabus Of U.P. Technical University. This Book Also Meets The Requirements Of Students Preparing For Various Competitive Examinations. Professionals And Research Workers Can Also Use This Book As A Ready Reference. It Covers The Topics Like Finite State Automata, Pushdown Automata, Turing Machines, Undecidability And Chomosky

Hierarchy. Salient Features# Simple And Clear Presentation# Includes More Than 300 Solved Problems# Comprehensive Introduction To Each Topic# Well Explained Theory With Constructive Examples

This book constitutes the refereed proceedings of the 9th International Conference on Language and Automata Theory and Applications, LATA 2015, held in Nice, France in March 2015. The 53 revised full papers presented together with 5 invited talks were carefully reviewed and selected from 115 submissions. The papers cover the following topics: algebraic language theory; algorithms for semistructured data mining, algorithms on automata and words; automata and logic; automata for system analysis and program verification; automata networks, concurrency and Petri nets; automatic structures; cellular automata, codes, combinatorics on words; computational complexity; data and image compression; descriptional complexity; digital libraries and document engineering; foundations of finite state technology; foundations of XML; fuzzy and rough languages; grammatical inference and algorithmic learning; graphs and graph transformation; language varieties and semigroups; parallel and regulated rewriting; parsing; patterns; string and combinatorial issues in computational biology and bioinformatics; string processing algorithms; symbolic dynamics; term rewriting;

transducers; trees, tree languages and tree automata; weighted automata.

This Book Is Aimed At Providing An Introduction To The Basic Models Of Computability To The Undergraduate Students. This Book Is Devoted To Finite Automata And Their Properties. Pushdown Automata Provides A Class Of Models And Enables The Analysis Of Context-Free Languages. Turing Machines Have Been Introduced And The Book Discusses Computability And Decidability. A Number Of Problems With Solutions Have Been Provided For Each Chapter. A Lot Of Exercises Have Been Given With Hints/Answers To Most Of These Tutorial Problems.

Theory Of AutomataTata McGraw-Hill EducationTheory of ComputationMJP Publisher In this book, which was originally published in 1985, Arto Salomaa gives an introduction to certain mathematical topics central to theoretical computer science: computability and recursive functions, formal languages and automata, computational complexity and cryptography.

Theory Of Computation Emphasizes The Topics Such As Automata, Abstract Models Of Computation, And Computability. It Also Includes Computational Complexity, P And Np Completeness. The Book Covers The Entire Syllabus Prescribed By Anna University For Be (Cse), Jntu, Hyderabad And Nagpur University. This Book Also

Meets The Requirements Of Students Preparing For Various Competitive Examinations. Professionals And Research Workers Can Also Use This Book As A Ready Reference. Salient Features * Presentation Is Lucid, Concise And Systematic * Includes More Than 300 Solved Problems. * Well Explained Theory With Constructive Examples.

Learn to identify the implementation of Discrete Structure and Theory of Automata in a myriad of applications used in day to day life Key Features? Learn how to write an argument using logical notation and decide if the argument is valid or not valid. ? Learn how to use the concept of different data structures (stacks, queues, sorting concept, etc.) in the computer science field. ? Learn how to use Automata Machines like FSM, Pushdown automata, Turing machine, etc. in various applications related to computer science through suitable practical illustration. ? Learn how to implement the finite state machine using JFLAP (Java Formal Languages and Automata Package). Description This book's purpose is to provide a modern and comprehensive introduction to the subject of Discrete Structures and Automata Theory. Discrete structures, also called Discrete Mathematics, are an exciting and active subject, particularly due to its extreme relevance to both Mathematics and Computer Science and Algorithms. This subject forms a common foundation for rigorous Page 20/23

Mathematical, Logical Reasoning and Proofs, as well as a formal introduction to abstract objects that are essential tools in an assortment of applications and effective computer implementations. Computing skills are now an integral part of almost all the Scientific fields, and students are very enthusiastic about being able to harness the full computing power of these tools. Further, this book also deep dives into the Automata Theory with various examples that illustrate the basic concepts and is substantiated with multiple diagrams. The book's vital feature is that it contains the practical implementation of the Automata Machine example through the JFLAP Tool. Courses on Discrete Structures and Automata theory are offered at most universities and colleges. What will you learn? Understand the basic concepts of Sets and operations in Sets. ? Demonstrate different traversal techniques for Trees and Graphs. ? Deep dive into the concept of Mathematical Induction, Sets, Relations, Functions, Recursion, Graphs, Trees, Boolean Algebra, and Proof techniques. ? Understand the concept of Automata Machines in day to day life like the Elevator, Turnstile, Genetic Algorithms, Traffic lights, etc.? Use the JFLAP tool to solve the various exercise problems related to automata theory. Who this book is for This book is a must-read to everyone interested in improving their concepts regarding Discrete Structure and Automata Theory. Table of Page 21/23

Contents 1. Set Theory 2. Relations and Functions 3. Graph Theory 4. Trees 5. Algebraic Structure 6. Recursion and Recurrence Relations 7. Sorting 8. Queues 9. Introduction 10. Finite Automata Theory 11. Theory of Machines 12. Regular Language 13. Grammar 14. Pushdown Automata 15. Cellular Automata 16. Turning Machine 17. Problems Solving Using JFLAP Tool 18. Revision Questions This book constitutes the refereed proceedings of the 11th International Conference on Developments in Language Theory, DLT 2007, held in Turku, Finland in July 2007. It addresses all important issues in language theory including grammars, acceptors and transducers for words, trees and graphs; algebraic theories of automata; relationships to cryptography, concurrency, complexity theory and logic; bioinspired computing, and quantum computing.

Combinatorial Algorithms on Words refers to the collection of manipulations of strings of symbols (words) - not necessarily from a finite alphabet - that exploit the combinatorial properties of the logical/physical input arrangement to achieve efficient computational performances. The model of computation may be any of the established serial paradigms (e.g. RAM's, Turing Machines), or one of the emerging parallel models (e.g. PRAM ,WRAM, Systolic Arrays, CCC). This book focuses on some of the accomplishments of recent years in such

disparate areas as pattern matching, data compression, free groups, coding theory, parallel and VLSI computation, and symbolic dynamics; these share a common flavor, yet ltave not been examined together in the past. In addition to being theoretically interest ing, these studies have had significant applications. It happens that these works have all too frequently been carried out in isolation, with contributions addressing similar issues scattered throughout a rather diverse body of literature. We felt that it would be advantageous to both current and future researchers to collect this work in a sin gle reference. It should be clear that the book's emphasis is on aspects of combinatorics and com plexity rather than logic, foundations, and decidability. In view of the large body of research and the degree of unity already achieved by studies in the theory of auto mata and formal languages, we have allocated very little space to them.

Copyright: 86679ddf5466aaff5687e5da0ff7617c