Principles Of Semiconductor Devices The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metalsemiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other fieldeffect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metalsemiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field. Basic Principles of Electronics, Volume 2: Semiconductors focuses on the properties, applications, and characteristics of semiconductors. The publication first elaborates on conduction in the solid state, conduction and heat, and semiconductors. Discussions focus on extrinsic or impurity semiconductors, electrons and holes, effect of temperature on the conductivity, mean free path, Joule heating effect, "vacancies" in crystals, and Drude's theory of metallic conduction. The text then ponders on semiconductor technology and simple devices, transistor, and transistor production and characteristics. Topics include strain gauges, thermistors, thermoelectric semiconductors, crystal preparation, photoconductors, and the Hall effect. The book elaborates on special devices, processes, and uses, common transistor circuitry, and a low-frequency equivalent circuit for common base, including radiation detection, optoelectronics, field effect transistors, sonar amplifier, oscillators, and multi-stage amplifiers. The publication is highly recommended for technical college students and researchers wanting to study semiconductors. Halbleiter-Leistungsbauelemente sind das Kernstück der Leistungselektronik. Sie bestimmen die Leistungsfähigkeit und machen neuartige und verlustarme Schaltungen erst möglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie über einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstörungsmechanismen und Störungseffekten. Die 2., überarbeitete Auflage berücksichtigt technische Neuerungen und Entwicklungen. Provides a basis for understanding the characteristics, operation, and limitations of semiconductor devices. This title deals with the electrical properties and characteristics of semiconductor materials and devices. It intends to bring together quantum mechanics, the quantum theory of solids, and semiconductor material physics. Market_Desc: · Electrical Engineers Special Features: · Over 150 solved examples that clarify concepts are integrated throughout the text. • End-of-chapter summary tables and hundreds of figures are included to reinforce the intricacies of modern semiconductor devices. Coverage of device optimization issues shows the reader how in each device one has to trade one performance against another About The Book: This introductory text presents a well-balanced coverage of semiconductor physics and device operation and shows how devices are optimized for applications. The text begins with an exploration of the basic physical processes upon which all semiconductor devices are based. Next, the author focuses on the operation of the important semiconductor devices along with issues relating to the optimization of device performance. From physical process to practical applications - Singh makes the complexities of modern semiconductor devices clear! The semiconductor devices that are driving today's information, technologies may seem remarkably complex, but they don't have to be impossible to understand. Filled with figures, flowcharts, and solved examples, Jasprit Singh's Semiconductor Devices provides an accessible, well-balanced introduction to semiconductor physics and its application to modern devices. Beginning with the physical process behind semiconductor devices, Singh clearly explains difficult topics, including bandstructure, effective masses, holes, doping, carrier transport, and lifetimes. Following these physical fundamentals, you'll explore the operation of important semiconductor devices, such as diodes, transistors, light emitters, and detectors, along with issues relating to the optimization of device performance. Features Over 150 solved examples, integrated throughout the text, clarify difficult concepts. End-of-chapter summary tables and hundreds of figures reinforce the intricacies of modern semiconductor devices. Discussion of device optimization issues explains why you have to trade one performance against another in devices. Shows the relationship of physical parameters to SPICE parameters and its impact on circuit issues. Technology Roadmaps outline what's currently happening in the field and present a look at where device technology is headed in the future. A Bit of History sections, included in each chapter, explore the history of the concepts developed and provide a snapshot of the personalities involved and the challenges of the time. Semiconductor lithography is one of the key steps in the manufacturing of integrated silicon-based circuits. In fabricating a semiconductor device such as a transistor, a series of hot processes consisting of vacuum film deposition, oxidations, and dopant implantation are all patterned into microscopic circuits by the wet processes of lithography. Lithography, as adopted by the semiconductor industry, is the process of drawing or printing the pattern of an integrated circuit in a resist material. The pattern is formed and overlayed to a previous circuit layer as many as 30 times in the manufacture of logic and memory devices. With the resist pattern acting as a mask, a permanent device structure is formed by subtractive (removal) etching or by additive deposition of metals or insulators. Each process step in lithography uses inorganic or organic materials to physically transform semiconductors of silicon, insulators of oxides, nitrides, and organic polymers, and metals, into useful electronic devices. All forms of electromagnetic radiation are used in the processing. Lithography is a mUltidisciplinary science of materials, processes, and equipment, interacting to produce three-dimensional structures. Many aspects of chemistry, electrical engineering, materials science, and physics are involved. The purpose of this book is to bring together the work of many scientists and engineers over the last 10 years and focus upon the basic resist materials, the lithographic processes, and the fundamental principles behind each lithographic process. A textbook introducing the physical concepts required for acomprehensive understanding of p-n junction devices, light emittingdiodes and solar cells. Semiconductor devices have made a major impact on the way wework and live. Today semiconductor p-n junction diode devices are experiencing substantial growth:solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes(LEDs) are revolutionizing energy efficient lighting. These twoemerging industries based on p-n junctions make a significant contribution to the reduction in fossil fuel consumption. Principles of Solar Cells, LEDs and Diodes covers the twomost important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverageof the physics of the p-n junction. _ e reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors inboth photovoltaic and LED devices. _ e treatment of a range of importantsemiconductor materials and device structures is also presented in a readable manner. Topics are divided into the following six chapters; • Semiconductor Physics • The PN Junction Diode • Photon Emission and Absorption • The Solar Cell • Light Emitting Diodes • Organic Semiconductors, OLEDs and Solar Cells Containing student problems at the end of each chapter andworked example problems throughout, this textbook is intended forsenior level undergraduate students doing courses in electricalengineering, physics and materials science. Researchers working onsolar cells and LED devices, and those in the electronics industrywould also benefit from the background information the bookprovides. The awaited revision of Semiconductor Devices: Physics and Technology offers more than 50% new or revised material that reflects a multitude of important discoveries and advances in device physics and integrated circuit processing. Offering a basic introduction to physical principles of modern semiconductor devices and their advanced fabrication technology, the third edition presents students with theoretical and practical aspects of every step in device characterizations and fabrication, with an emphasis on integrated circuits. Divided into three parts, this text covers the basic properties of semiconductor materials, emphasizing silicon and gallium arsenide; the physics and characteristics of semiconductor devices bipolar, unipolar special microwave and photonic devices; and the latest processing technologies, from crystal growth to lithographic pattern transfer. "This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- The goal of this text is to provide the basic principles of common semiconductor devices, with a special focus on Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs). Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world. Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner. The technological progress is closely related to the developments of various materials and tools made of those materials. Even the different ages have been defined in relation to the materials used. Some of the major attributes of the present-day age (i.e., the electronic materials' age) are such common tools as computers and fiber-optic telecommunication systems, in which semiconductor materials provide vital components for various mic- electronic and optoelectronic devices in applications such as computing, memory storage, and communication. The field of semiconductors encompasses a variety of disciplines. This book is not intended to provide a comprehensive description of a wide range of semiconductor properties or of a continually increasing number of the semiconductor device applications. Rather, the main purpose of this book is to provide an introductory perspective on the basic principles of semiconductor materials and their applications that are described in a relatively concise format in a single volume. Thus, this book should especially be suitable as an introductory text for a single course on semiconductor materials that may be taken by both undergraduate and graduate engineering students. This book should also be useful, as a concise reference on semiconductor materials, for researchers working in a wide variety of fields in physical and engineering sciences. Principles of Semiconductor Network Testing gathers together comprehensive information which test and process professionals will find invaluable. The techniques outlined will help ensure that test methods and data collected reflect actual device performance, rather than 'testing the tester' or being lost in the noise floor. This book addresses the fundamental issues underlying the semiconductor test discipline. The test engineer must understand the basic principles of semiconductor fabrication and process and have an in-depth knowledge of circuit functions, instrumentation and noise sources. Introduces a novel component-testing philosophy for semiconductor test, product and design engineers Best new source of information for experienced semiconductor engineers as well as entry-level personnel Eight chapters about semiconductor testing Principles of Semiconductor Devices A comprehensive introduction to CMOS and bipolar analog IC design. The book presumes no prior knowledge of linear design, making it comprehensible to engineers with a non-analog back-ground. The emphasis is on practical design, covering the entire field with hundreds of examples to explain the choices. Concepts are presented following the history of their discovery. Content: 1. Devices Semiconductors, The Bipolar Transistor, The Integrated Circuit, Integrated NPN Transistors, The Case of the Lateral PNP Transistor, CMOS Transistors, The Substrate PNP Transistor, Diodes, Zener Diodes, Resistors, Capacitors, CMOS vs. Bipolar; 2. Simulation, DC Analysis, AC Analysis, Transient Analysis, Variations, Models, Diode Model, Bipolar Transis-tor Model, Model for the Lateral PNP Transistor, MOS Transistor Models, Resistor Models, Models for Capacitors; 3. Current Mirrors; 4. Differential Pairs; 5. Current Sources; 6. Time Out: Analog Measures, dB, RMS, Noise, Fourier Analysis, Distortion, Frequency Compensation; 7. Bandgap References; 8. Op Amps; 9. Comparators; 10. Transimpedance Amplifiers; 11. Timers and Oscillators; 12. Phase-Locked Loops; 13. Filters; 14. Power, Linear Regulators, Low Drop-Out Regulators, Switching Regulators, Linear Power Amplifiers, Switching Power Am-plifiers; 15. A to D and D to A, The Delta-Sigma Converter; 16. Odds and Ends, Gilbert Cell, Multipliers, Peak Detectors, Rectifiers and Averaging Circuits, Thermometers, Zero-Crossing Detectors; 17. Layout. Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentration, and conduction in more detail. Thereafter the book is concerned with the principles of operation of specific devices, beginning with the Gunn Diode and the p-n junction. The remaining chapters cover the on specific devices, including the LED, the bipolar transistor, the field-effect transistor, and the semiconductor laser. The book concludes with a chapter providing a brief introduction to quantum theory. Not overtly mathematical, Introduction to Semiconductor Device Physics introduces only those physical concepts required for an understanding of the semiconductor devices being considered. The author's intuitive style, coupled with an extensive set of worked problems, make this the ideal introductory text for those concerned with understanding electrical and electronic engineering, applied physics, and related subjects. This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner Designed for senior and first year graduates students in electrical and computer engineering departments, taking a semiconductor device course. This text focuses on the fundamentals of semiconductor devices and the physical operating principles within them. It provides the underlying theories, with applications of semiconductor-device physics. An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications, have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology and several other topics that impinge on modern life. The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and user-friendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students. As is well known, Silicon widely dominates the market of semiconductor devices and circuits, and in particular is well suited for Ultra Large Scale Integration processes. However, a number of III-V compound semiconductor devices and circuits have recently been built, and the contributions in this volume are devoted to those types of materials, which offer a number of interesting properties. Taking into account the great variety of problems encountered and of their mutual correlations when fabricating a circuit or even a device, most of the aspects of III-V microelectronics, from fundamental physics to modelling and technology, from materials to devices and circuits are reviewed. Containing contributions from European researchers of international repute this volume is the definitive reference source for anyone interested in the latest advances and results of current experimental research in III-V microelectronics. This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those interested in silicon devices. Each chapter ends with exercises that have been designed to reinforce concepts, to complement arguments or derivations, and to emphasize the nature of approximations by critically evaluating realistic conditions. One of the most rigorous treatments of compound semiconductor device physics yet published**Essential reading for a complete understanding of modern devices**Includes chapter-ending exercises to facilitate understanding This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AIN substrates and their applications in electronics, detection, sensing, optoelectronics and photonics. Wengang (Wayne) Bi is Distinguished Chair Professor and Associate Dean in the College of Information and Electrical Engineering at Hebei University of Technology in Tianjin, China. Hao-chung (Henry) Kuo is Distinguished Professor and Associate Director of the Photonics Center at National Chiao-Tung University, Hsin-Tsu, Taiwan, China. Pei-Cheng Ku is an associate professor in the Department of Electrical Engineering & Computer Science at the University of Michigan, Ann Arbor, USA. Bo Shen is the Cheung Kong Professor at Peking University in China. The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architectures and semiconductor processes aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Discusses unique technologies and material only available in specialized journal and conferences. Covers emerging materials and device structures, such as ultra-low power technologies, nanoelectronics, and microsystem manufacturing. Explores semiconductor processing and manufacturing, device design, and performance. Contains practical applications in the engineering field, as well as graduate studies. Written by international experts from both academia and industry. This is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. The first part of the book covers electronic, optical, and thermal material parameters of nitride semiconductors that are employed in device models. Modern Semiconductor Devices for Integrated Circuits, First Edition introduces readers to the world of modern semiconductor devices with an emphasis on integrated circuit applications. KEY TOPICS: Electrons and Holes in Semiconductors; Motion and Recombination of Electrons and Holes; Device Fabrication Technology; PN and Metal—Semiconductor Junctions; MOS Capacitor; MOS Transistor; MOSFETs in ICs—Scaling, Leakage, and Other Topics; Bipolar Transistor. MARKET: Written by an experienced teacher, researcher, and expert in industry practices, this succinct and forward-looking text is appropriate for anyone interested in semiconductor devices for integrated curcuits, and serves as a suitable reference text for practicing engineers. The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metalsemiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics. Electrical Engineering Advanced Theory of Semiconductor Devices Semiconductor devices are ubiquitous in today's world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-ofthe-art knowledge of devices used in both III-V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p—n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices. The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department. Electronic components made out of semiconductors surround us in our daily lives. Semiconductor devices are used in computers, hand-held devices, and cell phones. They are also used to control the power in refrigerators, ovens, and dish-washers. They are used extensively in the cars we drive, the trains we ride in, and the airplanes we fly in. Semiconductor devices are also the principle component of solar panels on our homes. In short, semiconductor devices are present in most anything that pertains to energy, communications, or information. This book is an introduction to the operating principles of these semiconductor devices. This book is appropriate for undergraduate students in engineering. This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both. Semiconductor Circuits: Theory, Design and Experiment focuses on the design and modification of circuits involving transistors and related semiconductor devices. This book is divided into three parts. The four chapters of Part I are concerned with the physical theory of semiconductors; production of pn junctions; and characteristics and equivalent circuits of transistors. The treatment of physical theory is briefly mentioned. Part II forms the major portion of this book and is made up of seven chapters. These chapters have been written at a practical level, including a number of complete circuit designs. Chapters 10 and 11, in particular, deal with the aspects of semiconductors. Several laboratory demonstrations and experiments with semiconductors are provided in Part III. This publication is written as an undergraduate and technical college textbook that helps electrical engineering students in choosing the right component and device for a particular application. This textbook describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physical concepts, while keeping the internal coherence of the analysis and explaining the different levels of approximation. Coverage includes the main steps used in the fabrication process of integrated circuits: diffusion, thermal oxidation, epitaxy, and ion implantation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS, CMOS), including a number of solid-state sensors. The final chapters are devoted to the measuring methods for semiconductor-device parameters, and to a brief illustration of the scaling rules and numerical methods applied to the design of semiconductor devices. Copyright: 7b4597f76b8b97921d4f345c82949870