Power Plant Engineering Book By R K Rajput

Design of Solar Thermal Power Plants introduces the basic design methods of solar thermal power plants for technicians engaged in solar thermal power generation engineering. This book includes the author's theoretical investigation and study findings in solar heat concentrators, a performance evaluation of solar thermal collectors, a numerical simulation of the heat transfer process between complex geometrics, heat transfer through radiation, and more. Containing theoretical descriptions of solar concentrators and receivers. practical engineering examples, and detailed descriptions of site selections for solar thermal power plants, this book has a strong theoretical and practical value for readers. Contains practical guidance and applications, making it more useful and user-friendly for CSP engineers Includes theoretical investigation in solar heat concentrators, performance evaluation of solar thermal collectors, and the numerical simulation of heat transfer between complex geometrics with practical applications

Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive

understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe. Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermalhydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs. Captures important research conducted over last few decades by experts and allows new researchers and professionals to learn from the work of their predecessors Presents the most recent updates and developments, including the capabilities, limitations, and future development needs of all codes Incudes applications for each code to ensure readers have complete knowledge to apply to their own setting. This text is designed for courses in powerplant technology, powerplant engineering, and energy conversion offered in departments of mechanical engineering and nuclear engineering. It is also suitable as a supplement to courses in energy analysis offered in mechanical or nuclear engineering departments or energy analysis programs. It covers fossil, nuclear and

renewable-energy powerplants with equal emphasis, giving students a complete and detailed understanding of the entire spectrum of power generation systems. This book focuses on engineering fundamentals of water use for cooling needs of thermoelectric, or steam cycle, power plants, along with environmental and economic contexts. Water has historically been abundant and cheap; however, the ever-growing human demands for fresh surface water and groundwater are potentially putting ecosystems at risk. Water demands for energy production and electric generation power plants are part of total water demand. This book contributes important information to aid a broader discussion of integrated water and energy management by providing background, references, and context for water and energy stakeholders specifically on the topic of water for cooling thermal power plants. This book serves as a reference and source of information to power plant owner/operators, water resource managers, energy and environmental regulators, and non-governmental organizations. From power plant owners wanting to know the tradeoffs in environmental impact and economics of cooling towers to water utilities that might want to deliver waste water for reuse for power plant cooling, this book provides a wide array of regulatory and technical discussion to meet the needs of a broad audience. One of the most critical requirements for safe and reliable nuclear power plant operations is the availability of competent maintenance personnel. However, just as the nuclear power industry is experiencing a renaissance, it is also experiencing an exodus of

seasoned maintenance professionals due to retirement. The perfect guide for engineers just entering the field or experienced maintenance supervisors who need to keep abreast of the latest industry best practices, Nuclear Power Plant Maintenance: Mechanical Systems, Equipment and Safety covers the most common issues faced in day-to-day operations and provides practical, technically proven solutions. The book also explains how to navigate the various maintenance codes, standards and regulations for the nuclear power industry.

Discusses 50 common issues faced by engineers in the nuclear power plant field Provides advice for complying with international codes and standards (including ASME) Describes safety classification for systems and components Includes case studies to clearly explain the lessons learned over decades in the nuclear power industry

Information on contemporary topics in power plant technology such as super critical boiler technology Practical approach to delineate complex topics with visual aids and representational schemes Exhaustive coverage of power generation from non-conventional sources of energy Ample solved examples, multiplechoice and exercise questions for practice.

Since first AC current high-power hydropower plant was put in operation, built by Nikola Tesla and George Westinghouse in 1895 on Niagara Falls, electrification of the world has dramatically changed. The growing power demand and energy consumption in the last decades require fundamental changes in the process, power production, and services. These requirements tend to

use both conventional and nonconventional energy generation in order to have power plants economically useful and environmentally friendly to the society. The goal of this textbook is to provide an up-to-date review of this important topic with specific emphasis on the current guidelines for improving overall efficiency, lowering emissions, and using large share of renewable energy. Power Plant EngineeringCRC Press

This Text-Cum-Reference Book Has Been Written To Meet The Manifold Requirement And Achievement Of The Students And Researchers. The Objective Of This Book Is To Discuss, Analyses And Design The Various Power Plant Systems Serving The Society At Present And Will Serve In Coming Decades India In Particular And The World In General. The Issues Related To Energy With Stress And Environment Up To Some Extent And Finally Find Ways To Implement The Outcome.Salient Features# Utilization Of Non-Conventional Energy Resources# Includes Green House Effect# Gives Latest Information S In Power Plant Engineering# Include Large Number Of Problems Of Both Indian And Foreign Universities# Rich Contents, Lucid Manner

* Useful to engineers in any industry * Extensive references provided throughout * Comprehensive range of topics covered * Written with practical situations in mind A plant engineer is responsible for a wide range of industrial activities, and may work in any industry. The breadth of knowledge required by such professionals is so wide that previous books addressing plant engineering have either been limited to certain subjects or cursory in their treatment of topics. The Plant Engineer's Reference Book is the first volume to offer complete coverage of subjects of interest to the plant engineer. This reference work provides a primary

source of information for the plant engineer. Subjects include selection of a suitable site for a factory and provision of basic facilities (including boilers, electrical systems, water, HVAC systems, pumping systems and floors and finishes). Detailed chapters deal with basic issues such as lubrication, corrosion, energy conservation, maintenance and materials handling as well as environmental considerations, insurance matters and financial concerns. The authors chosen to contribute to the book are experts in their various fields. The Editor has experience of a wide range of operations in the UK, other European countries, the USA, and elsewhere in the world. Produced with the backing of the Institution of Plant Engineers, this work is the primary source of information for plant engineers in any industry worldwide.

The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integration of subsystems into one network with the help of embedded controllers and OPC interfaces. The book includes comprehensive listings of operating values and ranges of parameters for temperature, pressure, flow, level, etc of a typical 250/500 MW thermal power plant. Appropriate for project engineers as well as instrumentation/control engineers, the book also includes tables, charts, and figures from real-life projects around the world. Covers systems in use in a wide range of power plants: conventional thermal power plants, combined/cogen plants, supercritical plants, Page 6/23

and once through boilers Presents practical design aspects and current trends in instrumentation Discusses why and how to change control strategies when systems are updated/changed Provides instrumentation selection techniques based on operating parameters. Spec sheets are included for each type of instrument. Consistent with current professional practice in North America, Europe, and India This comprehensive volume provides a complete, authoritative, up-to-date reference for all aspects of power plant engineering. Coverage ranges from engineering economics to coal and limestone handling, from design processes to plant thermal heat balances. Both theory and practical applications are covered, giving engineers the information needed to plan, design, construct, upgrade, and operate power plants. Power Plant Engineering is the culmination of experience of hundreds of engineers from Black & Veatch, a leading firm in the field for more than 80 years. The authors review all major power generating technologies, giving particular emphasis to current approaches. Special features of the book include: * More than 1000 figures and lines drawings that illustrate all aspects of the subject. * Coverage of related components and systems in power plants such as turbine-generators, feedwater heaters, condenser, and cooling towers. * Definitions and analyses of the features of various plant systems. * Discussions of promising future technologies. Power Plant Engineering will be the standard reference in the professional engineer's library as the source of information on steam power plant generation. In addition, the clear presentation of the material will make this book suitable for use by students preparing to enter the field.

From wood and coal to predominantly oil and natural gas. Thermal Power Plants use fuels for power generation. Water is used for process, cooling, as well as for service/drinking Page 7/23

requirement. Chemicals are used for conditioning of water, corrosion-control and sometimes for conditioning of fuel as well. Lubricants are used for machinery. These inputs generate waste products. Human related wastes (sewage etc.) are also generated along with the processed waste. These pollutants/wastes need to be treated before their disposal from the plants. The treated effluents are required to meet the limits set by Central / State Pollution Control Boards. The regulations, issued by these agencies, specify the maximum allowable limits applicable to the pollutants discharge from the Power Plants. This book is a serious effort that deals in detail with all the above issues and we are sure that scientists, academicians, researchers and professionals who are constantly facing these issues and are striving to move towards a zero emission regime, will find this monograph a very useful reference tool on the topic. Note: T&F does not sell or distribute the Hardback in India. Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. The main aim of this study is to present power plants for all fields of industry. The chapters collected in the book are contributions by invited researchers with long-standing experience in different research areas. I hope that the material presented here is understandable to a wide audience, not only energy and mechanical engineering specialists but also scientists from various disciplines. The book contains seven chapters in two sections: (1) "Power Plants

Extensively revised and updated, this new edition of a classic resource provides powerplant engineers with a full range of information from basic operations to leading-edge technologies, including steam generation, turbines and diesels, fuels and fuel handling, pollution control, plant electrical systems, $P_{Page 8/23}$

and instrumentation and control. New material covers various energy resources for power generation, nuclear plant systems, hydroelectric power stations, alternative and cogeneration energy plants, and environmental controls. With over 600 drawings, diagrams, and photographs, it offers engineers and technicians the information needed to keep powerplants operating smoothly into the 21st century.

Thermal Engineering of Nuclear Power Stations: Balance-of-Plant Systems serves as a ready reference to better analyze common engineering challenges in the areas of turbine cycle analysis, thermodynamics, and heat transfer. The scope of the book is broad and comprehensive, encompassing the mechanical aspects of the entire nuclear station balance of plant from the source of the motive steam to the discharge and/or utilization of waste heat and beyond. Written for engineers in the fields of nuclear plant and thermal engineering, the book examines the daily, practical problems encountered by mechanical design, system, and maintenance engineers. It provides clear examples and solutions drawn from numerous case studies in actual, operating nuclear stations.

This book provides a reference to analysis techniques of common cooling water system problems and a historical perspective on solutions to chronic cooling water system problems, such as Page 9/23

corrosion and biofouling. It covers best design practices for cooling water systems that are required to support the operation of all electric power plants. Plant engineers will gain better understanding of the practical issues associated with their cooling water systems and new designs or modifications of their systems should consider the actual challenges to the systems. The book is intended for graduate students and practicing engineers working in both nuclear and fossil power plants and industrial facilities that use large amounts of cooling water.

In the Standard Handbook of Plant Engineering, Second Edition, Robert C. Rosaler and 70 other industry experts take you on an exhaustive tour of the basic plant facility, plant operation equipment and the all-important maintenance function-giving you the hands-on skill and essential technical data you need to keep your plant running smoothly. You get complete, up-to-the-minute details on: In-plant prime power generation and cogeneration; Heating, ventilating and air conditioning; Water sources, use and disposition; Mechanical power transmission; Instrumentation and automatic control; Pollution control and waste disposal; Plant safety and sanitation; Energy conservation; Lubricants and lubrication systems.

Power Plant Synthesis provides an integrated approach to the operation, analysis, simulation, and dimensioning of power plants for electricity and Page 10/23

thermal energy production. Fundamental concepts of energy and power, energy conversion, and power plant design are first presented, and integrated approaches for the operation and simulation of conventional electricity production systems are then examined. Hybrid power plants and cogeneration systems are covered, with operating algorithms, optimization, and dimensioning methods explained. The environmental impacts of energy sources are described and compared, with real-life case studies included to show the synthesis of the specific topics covered.

Practical Power Plant Engineering offers engineers, new to the profession, a guide to the methods of practical design, equipment selection and operation of power and heavy industrial plants as practiced by experienced engineers. The author-a noted expert on the topic-draws on decades of practical experience working in a number of industries with ever-changing technologies. This comprehensive book, written in 26 chapters, covers the electrical activities from plant design, development to commissioning. It is filled with descriptive examples, brief equipment data sheets, relay protection, engineering calculations, illustrations, and commonsense engineering approaches. The book explores the most relevant topics and reviews the industry standards and established engineering practices. For example, the author leads the reader through the Page 11/23

application of MV switchgear, MV controllers, MCCs and distribution lines in building plant power distribution systems, including calculations of interrupting duty for breakers and contactors. The text also contains useful information on the various types of concentrated and photovoltaic solar plants as well as wind farms with DFIG turbines. This important book: • Explains why and how to select the proper ratings for electrical equipment for specific applications • Includes information on the critical requirements for designing power systems to meet the performance requirements • Presents tests of the electrical equipment that prove it is built to the required standards and will meet plant-specific operating requirements Written for both professional engineers early in their career and experienced engineers, Practical Power Plant Engineering is a must-have resource that offers the information needed to apply the concepts of power plant engineering in the real world.

Completely revised and updated, this tenth edition of a bestseller covers both management and technical strategies for slashing energy costs by as much as 40 percent in industrial facilities. It discusses cogeneration, gas distributed generation technologies, steam system optimization, geothermal heat pumps, energy outsourcing, electricity purchasing strategies, and power quality case studies. It also provides guidelines for life cycle

costing, electrical system optimization, lighting and HVAC system efficiency improvement, mechanical and process system performance, building energy loss reduction, financing energy projects, and more. Our lives and the functioning of modern societies are intimately intertwined with electricity consumption. We owe our quality of life to electricity. However, the electricity generation industry is partly responsible for some of the most pressing challenges we currently face, including climate change and the pollution of natural environments, energy inequality, and energy insecurity. Maintaining our standard of living while addressing these problems is the ultimate challenge for the future of humanity. The objective of this book is to equip engineering and science students and professionals to tackle this task. Written by an expert with over 25 years of combined academic and industrial experience in the field, this comprehensive textbook covers both fossil fuels and renewable power generation technologies. For each topic, fundamental principles, historical backgrounds, and state-of-the-art technologies are covered. Conventional power production technologies, steam power plants, gas turbines, and combined cycle power plants are presented. For steam power plants, the historical background, thermodynamic principles, steam generators, combustion systems, emission reduction technologies, steam turbines, condensate-feedwater systems, and cooling systems are covered in separate chapters. Similarly, the historical background and thermodynamic principles of gas turbines, along with comprehensive discussions on compressors, Page 13/23

combustors, and turbines, are presented and then followed with combined cycle power plants. The second half of the book deals with renewable energy sources, including solar photovoltaic systems, solar thermal power plants, wind turbines, ocean energy systems, and geothermal power plants. For each energy source, the available energy and its variations, historical background, operational principles, basic calculations, current and future technologies, and environmental impacts are presented. Finally, energy storage systems as required technologies to address the intermittent nature of renewable energy sources are covered. While the book has been written with the needs of undergraduate and graduate college students in mind, professionals interested in widening their understanding of the field can also benefit from it.

This textbook has been designed for students of B.E./B.Tech Mechanical Engineering. It provides all the necessary information about power plants and steam power plants, nuclear and hydel power plants, diesel and gas turbine power plants, geothermal plants, ocean thermal plants, tidal power plants, and solar power plants, and the economics behind them. Key features: Each chapter includes a solved problem. The text is supplemented with illustrated diagrams, tables, flow charts, and graphs wherever required, for clear understanding. A summary at the end of each chapter helps students to review material presented. Review questions and exercise problems have been designed to enhance the engineering skills of the student. The fourth edition of the book is richer in contents

presenting updated information on the fundamental aspects of various processes related to thermal power plants. The major thrust in the book is given on the hands-on procedure to deal with the normal and emergency situations during plant operation. Beginning from the fundamentals, the book, explores the vast concepts of boilers, steam turbines and other auxiliary systems. Following a simple text format and easy-tograsp language, the book explicates various real-life situation-related topics involving operation, commissioning, maintenance, electrical and instrumentation of a power plant. NEW TO THE FOURTH EDITION • The text now incorporates a new chapter on Environmental and Safety Aspects of Thermal Power Plants. • New sections on Softener, Water Treatment of Supercritical Boiler, Wet Mode and Dry Mode Operation of Supercritical Boiler, Electromatic Pressure Relief Valve, Pressure Reducing and Desuperheating (PRDS) System, Orsat Apparatus, and Safety Interlocks and Auto Control Logics in Boiler have been added in related chapters. • Several sections have been updated to provide the reader with the latest information. • A new appendix on Important Information on Power Generation has been incorporated into the text. Dealing with all the latest coverage, the book is written to address the requirements of the undergraduate students of power plant engineering. Besides this, the text would also cater to the needs of those candidates who are preparing for Boiler Operation Engineers (BOE) Examination and the undergraduate/postgraduate students who are pursuing courses in various power

training institutes. The book will also be of immense use to the students of postgraduate diploma course in thermal power plant engineering. KEY FEATURES • Covers almost all the functional areas of thermal power plants in its systematically arranged topics. • Incorporates more than 500 self-test questions in chapterend exercises to test the student's grasp of the fundamental concepts and BOE Examination preparation. • Involves numerous well-labelled diagrams throughout the book leading to easy learning. • Provides several solved numerical problems that generally arise during the functioning of thermal power plants. Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power plants, with chapters in steam power plant systems, start up and shut down, and interlock and protection. Its practical approach is ideal for engineering professionals. Focuses exclusively on thermal power, addressing some new frontiers specific to thermal plants Presents both technology and design aspects of thermal power plants, with special treatment on plant operating practices and troubleshooting Features a practical approach ideal for

professionals, but can also be used to complement undergraduate and graduate studies This book is intended to meet the requirements of the fresh engineers on the field to endow them with indispensable information, technical know-how to work in the power plant industries and its associated plants. The book provides a thorough understanding and the operating principles to solve the elementary and the difficult problems faced by the modern young engineers while working in the industries. This book is written on the basis of 'hands-on' experience, sound and in-depth knowledge gained by the authors during their experiences faced while working in this field. The problem generally occurs in the power plants during operation and maintenance. It has been explained in a lucid language.

Meant for the undergraduate course on Power Plant Engineering studied by the mechanical engineering students, this book is a comprehensive and up-to-date offering on the subject. It has detailed coverage on hydroelectric, diesel engine and gas turbine power plants. Plenty of solved examples, exercise questions and illustrations make this a very student friendly text. Fossil-fuel power plants account for the majority of worldwide power generation. Increasing global energy demands, coupled with issues of ageing and inefficient power plants, have led to new power plant construction programmes. As cheaper fossil fuel resources are exhausted and emissions criteria are tightened, utilities are turning to power plants designed with performance in mind to satisfy requirements for improved capacity,

efficiency, and environmental characteristics. Advanced power plant materials, design and technology provides a comprehensive reference on the state of the art of gasfired and coal-fired power plants, their major components and performance improvement options. Part one critically reviews advanced power plant designs which target both higher efficiency and flexible operation, including reviews of combined cycle technology and materials performance issues. Part two reviews major plant components for improved operation, including advanced membrane technology for both hydrogen (H2) and carbon dioxide (CO2) separation, as well as flue gas handling technologies for improved emissions control of sulphur oxides (SOx), nitrogen oxides (NOx), mercury, ash and particulates. The section concludes with coverage of high-temperature sensors, and monitoring and control technology that are essential to power plant operation and performance optimisation. Part three begins with coverage of low-rank coal upgrading and biomass resource utilisation for improved power plant fuel flexibility. Routes to improve the environmental impact are also reviewed, with chapters detailing the integration of underground coal gasification and the application of carbon dioxide (CO2) capture and storage. Finally, improved generation performance is reviewed with coverage of syngas and hydrogen (H2) production from fossil-fuel feedstocks. With its distinguished international team of contributors, Advanced power plant materials, design and technology is a standard reference for all power plant engineers and operators, as well as to academics and researchers in this field. Provides a

comprehensive reference on the state-of-the-art gasfired and coal-fired power plants, their major components and performance improvement options Examines major plant components for improved operation as well as flue gas handling technologies for improved emissions control Routes to improve environmental impact are discussed with chapters detailing the integration of underground coal gasification

Coal- and gas-based power plants currently supply the largest proportion of the world's power generation capacity, and are required to operate to increasingly stringent environmental standards. Higher temperature combustion is therefore being adopted to improve plant efficiency and to maintain net power output given the energy penalty that integration of advanced emissions control systems cause. However, such operating regimes also serve to intensify degradation mechanisms within power plant systems, potentially affecting their reliability and lifespan. Power plant life management and performance improvement critically reviews the fundamental degradation mechanisms that affect conventional power plant systems and components, as well as examining the operation and maintenance approaches and advanced plant rejuvenation and retrofit options that the industry are applying to ensure overall plant performance improvement and life management. Part one initially reviews plant operation issues, including fuel flexibility, condition

monitoring and performance assessment. Parts two, three and four focus on coal boiler plant, gas turbine plant, and steam boiler and turbine plant respectively, reviewing environmental degradation mechanisms affecting plant components and their mitigation via advances in materials selection and life management approaches, such as repair, refurbishment and upgrade. Finally, part five reviews issues relevant to the performance management and improvement of advanced heat exchangers and power plant welds. With its distinguished editor and international team of contributors, Power plant life management and performance improvement is an essential reference for power plant operators, industrial engineers and metallurgists, and researchers interested in this important field. Provides an overview of the improvements to plant efficiency in coal- and gas-based power plants Critically reviews the fundamental degradation mechanisms that affect conventional power plant systems and components, noting mitigation routes alongside monitoring and assessment methods Addresses plant operation issues including fuel flexibility, condition monitoring and performance assessment

Plant engineers are responsible for a wide range of industrial activities, and may work in any industry. This means that breadth of knowledge required by such professionals is so wide that previous books Page 20/23

addressing plant engineering have either been limited to only certain subjects or cursory in their treatment of topics. The Plant Engineering Handbook offers comprehensive coverage of an enormous range of subjects which are of vital interest to the plant engineer and anyone connected with industrial operations or maintenance. This handbook is packed with indispensable information, from defining just what a Plant Engineer actually does, through selection of a suitable site for a factory and provision of basic facilities (including boilers, electrical systems, water, HVAC systems, pumping systems and floors and finishes) to issues such as lubrication, corrosion, energy conservation, maintenance and materials handling as well as environmental considerations, insurance matters and financial concerns. One of the major features of this volume is its comprehensive treatment of the maintenance management function; in addition to chapters which outline the operation of the various plant equipment there is specialist advice on how to get the most out of that equipment and its operators. This will enable the reader to reap the rewards of more efficient operations, more effective employee contributions and in turn more profitable performance from the plant and the business to which it contributes. The Editor, Keith Mobley and the team of expert contributors, have practiced at the highest levels in leading corporations across the $_{Page\,21/23}$

USA, Europe and the rest of the world. Produced in association with Plant Engineering magazine, this book will be a source of information for plant engineers in any industry worldwide. * A Flagship reference work for the Plant Engineering series * Provides comprehensive coverage on an enormous range of subjects vital to plant and industrial engineer * Includes an international perspective including dual units and regulations This textbook has been designed for a one-semester course on Power Plant Engineering studied by both degree and diploma students of mechanical and electrical engineering. It effectively exposes the students to the basics of power generation involved in several energy conversion systems so that they gain comprehensive knowledge of the operation of various types of power plants in use today. After a brief introduction to energy fundamentals including the environmental impacts of power generation, the book acquaints the students with the working principles, design and operation of five conventional power plant systems, namely thermal, nuclear, hydroelectric, diesel and gas turbine. The economic factors of power generation with regard to estimation and prediction of load, plant design, plant operation, tariffs and so on, are discussed and illustrated with the help of several solved numerical problems. The generation of electric power using renewable energy sources such as solar, wind, biomass, geothermal, Page 22/23

tidal, fuel cells, magneto hydrodynamic,

thermoelectric and thermionic systems, is discussed elaborately. The book is interspersed with solved problems for a sound understanding of the various aspects of power plant engineering. The chapter-end questions are intended to provide the students with a thorough reinforcement of the concepts discussed. <u>Copyright: 79c72c05155f0f77170f4b17389b3eb3</u>