Designing new nuclear facilities is an extraordinarily complex exercise, often requiring teams of specialists several hundred strong. Nuclear Facilities: A Designer's Guide provides an insight into each of the main contributors and shows how the whole design process is drawn together. Essential reading for all nuclear professionals: those already involved in the industry will gain knowledge that enables them to interact more effectively with colleagues in other disciplines. Its wealth of information will assist students and graduates in progressing more rapidly into fully rounded contributors to the nuclear facility design process. Whilst those joining nuclear from other industries will find a structured introduction to the nuclear world and discover what differentiates it from other spheres of engineering. A single, comprehensive text on nuclear facility design which covers all major aspects of the process Packed full of essential information, its complex subject matter is explained in a logical and comprehensible style Valuable to those involved in both new build and decommissioning projects Written by a highly respected expert in the nuclear industry

Renewable Energy Systems and Desalination is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The two volumes present state-of-the art subject matter of various aspects of Renewable Energy Systems and Desalination such as: A Short Historical Review Of Renewable Energy; Renewable Energy Resources; Desalination With Renewable Energy - A Review; Renewable Energy And Desalination Systems; Why Use Renewable Energy For Desalination; Thermal Energy Storage; Electrical Energy Storage; Tidal Energy; Desalination Using Tidal Energy; Wave Energy; Availability Of Wind Energy And Its Estimation; The Use Of Geothermal Energy In Desalination; Solar Radiation Energy (Fundamentals); High Temperature Solar Concentrators; Medium Temperature Solar Concentrators (Parabolic-Troughs Collectors); Low Temperature Solar Collectors; Solar Photovoltaic Energy Conversion; Photovoltaics; Flat-Plate Collectors; Large Active Solar Systems: Load; Integration Of Solar Pond With Water Desalination; Large Active Solar Systems: Typical Economic Analysis; Evacuated Tube Collectors; Parabolic Trough Collectors; Central Receivers; Configuration, Theoretical Analysis And Performance Of Simple Solar Stills; Development In Simple Solar Stills; Multi-Effect Solar Stills; Materials For Construction Of Solar Stills; Reverse Osmosis By Solar Energy; Solar Distillation; Solar Photochemistry; Photochemical Conversion Of Solar Energy; Availability Of Solar Radiation And Its Estimation; Economics Of Small Solar-Assisted Multipleeffect Seawater Distillation Plants; A Solar-Assisted Sea Water Multiple Effect Distillation Plant 15 Years Of Operating Performance (1985-1999);Mathematical Simulation Of A Solar Desalination Plant; Mathematical Models Of Solar Energy Conversion Systems; Multiple Effect Distillation Of Seawater Using Solar Energy – The Case Of Abu Dhabi Solar Desalination Plant; Solar Irradiation Fundamentals; Water Desalination By Humidification And Dehumidification Of Air, Seawater Greenhouse Process. These volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers

Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications provides a detailed overview of advanced water treatment methods involving membranes, which are increasingly seen as effective replacements for a range of conventional water treatment methods. The text begins with reviews of novel membrane materials and advances in membrane operations, then examines the processes involved with improving membrane performance. Final chapters cover the application of membrane technologies for use in water treatment, with detailed discussions on municipal wastewater and reuse in the textile and paper industries. Provides a detailed overview of advanced water treatment methods involving membranes Coverage includes advancements in membrane materials, improvement in membrane performance, and their applications in water treatment Discusses the use of membrane technologies in the production of drinking water, desalination, wastewater treatment, and recovery

Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes Describes latent heat storage systems and thermochemical heat storage Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry Conventional coal, oil and gas resources used worldwide for power production and transportation are limited and unsustainable. Research and development into clean, alternative hydrocarbon fuels is therefore aimed at improving fuel security through exploring new feedstock conversion techniques, improving production efficiency and reducing environmental impacts. Advances in clean hydrocarbon fuel processing provides a comprehensive and systematic reference on the range of alternative conversion processes and technologies. Following introductory overviews of the feedstocks, environmental issues and life cycle assessment for alternative hydrocarbon fuel processing, sections go on to review solid, liquid and gaseous fuel conversion. Solid fuel coverage includes reviews of liquefaction, gasification, pyrolysis and biomass catalysis. Liquid fuel coverage includes reviews of sulfur removal, partial oxidation and hydroconversion. Gaseous fuel coverage includes reviews of Fischer-Tropsch synthesis, methanol and dimethyl ether production, water-gas shift technology and natural gas hydrate conversion. The final section examines environmental degradation issues in fuel processing plants as well as automation, advanced process control and process modelling techniques for plant optimisation Written by an international team of expert contributors, Advances in clean hydrocarbon fuel processing provides a valuable reference for fuel processing engineers, industrial petrochemists and energy professionals, as well as for researchers and academics in this field. A comprehensive reference on the range of alternative conversion processes and technologies Provides an overview of the feedstocks, environmental issues and life cycle assessments for alternative hydrocarbon fuel processing, including a review of the key issues in solid, liquid and gaseous fuel conversion Examines automation, advanced process control and process modelling techniques for plant optimisation Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of

advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems

Microbial Electrochemical and Fuel Cells: Fundamentals and Applications contains the most updated information on bio-electrical systems and their ability to drive an electrical current by mimicking bacterial interactions found in nature to produce a small amount of power. One of the most promising features of the microbial fuel cell is its application to generate power from wastewater, and its use in the treatment of water to remove contaminants, making it a very sustainable source of power generation that can feasibly find application in rural areas where providing more conventional sources of power is often difficult. The book explores, in detail, both the technical aspects and applications of this technology, and was written by an international team of experts in the field who provide an introduction to microbial fuel cells that looks at their electrochemical principles and mechanisms, explains the materials that can be used for the various sections of the fuel cells, including cathode and anode materials, and provides key analysis of microbial fuel cell performance looking at their usage in hydrogen production, waste treatment, and sensors, amongst other applications. Includes coverage of the types and principles of electrochemical cells Provides information on the construction of fuel cells and appropriate materials Presents the latest on this renewable source of energy and the process for the treatment of waste water

The utilisation of biomass is increasingly important for low- or zero-carbon power generation. Developments in conventional power plant fuel flexibility allow for both direct biomass combustion and co-firing with fossil fuels, while the integration of advanced technologies facilitates conversion of a wide range of biomass feedstocks into more readily combustible fuel. Biomass combustion science, technology and engineering reviews the science and technology of biomass combustion, conversion and utilisation. Part one provides an introduction to biomass supply chains and feedstocks, and outlines the principles of biomass combustion for power generation. Chapters also describe the categorisation and preparation of biomass feedstocks for combustion and gasification. Part two goes on to explore biomass combustion and co-firing, including direct combustion of biomass, biomass co-firing and gasification, fast pyrolysis of biomass for the production of liquids and intermediate pyrolysis technologies. Largescale biomass combustion and biorefineries are then the focus of part three. Following an overview of large-scale biomass combustion plants, key engineering issues and plant operation are discussed, before the book concludes with a chapter looking at the role of biorefineries in increasing the value of the end-products of biomass conversion. With its distinguished editor and international team of expert contributors, Biomass combustion science, technology and engineering provides a clear overview of this important area for all power plant operators, industrial engineers, biomass researchers, process chemists and academics working in this field. Reviews the science and technology of biomass combustion for power generation Describes the categorisation and preparation of biomass supply chains and feedstocks for combustion for power generation Describes the categorisation and preparation of biomass combustion, conversion and utilisation Provides an introduction to biomass supply chains and feedstocks for combustion for pow

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.

Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuelflexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering. The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility. Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field. Provides a comprehensive review of gas turbine systems and maintenance of components of a cycle Examines the major components of modern systems and fundamentals of a cycle Examines the major components of modern systems and fundamentals of a cycle Examines the major components of modern systems, including compressors, combustors and turbines Discusses the operation and maintenance of component parts

Modern Gas Turbine SystemsHigh Efficiency, Low Emission, Fuel Flexible Power GenerationElsevier

In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related

technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-theart concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. Presents an extensive overview of ceramic materials involved in energy conversion and storage Updates on the tremendous progress that has been achieved in recent years Showcases authors at the forefront of their fields, including results from the huge amount of published data Provides a list of requirements for the materials used for each energy technology Includes an evaluation and comparison of materials available, including their structure, properties and performance There is currently significant interest in the development of small modular reactors (SMRs) for the generation of both electricity and process heat. SMRs offer potential benefits in terms of better affordability and enhanced safety, and can also be sited more flexibly than traditional nuclear plants. Small Modular Reactors: Nuclear Power Fad or Future? reviews SMR features, promises, and problems, also discussing what lies ahead for reactors of this type. The book is organized into three major parts with the first part focused on the role of energy, especially

nuclear energy, for global development. It also provides a brief history of SMRs. The second major part presents basic nuclear power plant terminology and then discusses in depth the attributes of SMRs that distinguish them from traditional nuclear plants. The third and final major section discusses the current interest in SMRs from a customer's perspective and delineates several remaining hurdles that must be addressed to achieve wide-spread SMR deployment. Provides decision-makers in governments, business, and research with the needed background on small nuclear power and an overview of the current situation Presents a balanced discussion of the many advantages of SMRs and the challenges they face Written by a highly respected expert in the nuclear industry

Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes Editors and contributors are well known experts in the field Presents the first book on this specific topic

Compendium of Hydrogen Energy, Volume 2: Hydrogen Storage, Distribution and Infrastructure focuses on the storage and transmission of hydrogen. As many experts believe the hydrogen economy will, at some point, replace the fossil fuel economy as the primary source of the world's energy, this book details hydrogen storage in pure form, including chapters on hydrogen liquefaction, slush production, as well as underground and pipeline storage. Other sections in the book explore physical and chemical storage, including environmentally sustainable methods of hydrogen production from water, with final chapters dedicated to hydrogen distribution and infrastructure. Covers a wide array of methods for storing hydrogen, detailing hydrogen transport and the infrastructure required for transition to the hydrogen economy Written by leading academics in the fields of sustainable energy and experts from the world of industry Part of a very comprehensive compendium which looks at the entirety of the hydrogen energy economy

Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems. With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. An authorative guide to the design, development and operation of gearless direct drives Discusses the principles of electrical design for permanent magnet generators and electrical, thermal and structural generator design and systems integration Investigates the commercial applications of wind turbine drive systems

Safe and Secure Transport and Storage of Radioactive Materials reviews best practice and emerging techniques in this area. The transport of radioactive materials is an essential operation in the nuclear industry, without which the generation of nuclear power would not be possible. Radioactive materials also often need to be stored pending use, treatment, or disposal. Given the nature of radioactive materials, it is paramount that transport and storage methods are both safe and secure. A vital guide for managers and general managers in the nuclear power and transport industries, this book covers topics including package design, safety, security, mechanical performance, radiation protection and shielding, thermal performance, uranium ore, fresh fuel, uranium hexafluoride, MOX, plutonium, and more. Uniquely comprehensive and systematic coverage of the packaging, transport, and storage of radioactive materials Section devoted to spent nuclear fuels Expert team of authors and editors

This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future. The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives. Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial

processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. Provides a thorough introduction to ORC power systems Contains detailed chapters on ORC plant components Includes a section focusing on ORC design and optimization Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes Various chapters are authored by well-known specialists from Academia and ORC manufacturers

Advanced District Heating and Cooling (DHC) Systems presents the latest information on the topic, providing valuable information on the distribution of centrally generated heat or cold energy to buildings, usually in the form of space heating, cooling, and hot water. As DHC systems are more efficient and less polluting than individual domestic or commercial heating and cooling systems, the book provides an introduction to DHC, including its potential contribution to reducing carbon dioxide emissions, then reviews thermal energy generation for DHC, including fossil fuel-based technologies, those based on renewables, and surplus heat valorization. Final sections address methods to improve the efficiency of DHC. Gives a comprehensive overview of DHC systems and the technologies and energy resources utilized within these systems Analyzes the various methods used for harnessing energy to apply to DHC systems Ideal resource for those interested in district cooling, teleheating, heat networks, distributed heating, thermal energy, cogeneration, combined heat and power, and CHP Reviews the application of DHC systems in the field, including both the business model side and the planning needed to implement these systems Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration

between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume Presents the environmental aspects and economics of salinity gradient energy Explores possible synergies between desalination and salinity gradient energy

Compendium of Hydrogen Energy: Hydrogen Production and Purification, the first text in a four-volume series, focuses on the production of hydrogen. As many experts believe that the hydrogen economy will eventually replace the fossil fuel economy as our primary source of energy, the text provides a timely discussion on this interesting topic. The text details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen Discusses the hydrogen economy and its potential to replace fossil fuels as our primary source of energy Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods for energy Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods for energy Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods for energy Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of energy Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen production using fossil fuels.

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates Written by an expert in that particular area

Solar Energy Conversion and Photoenergy Systems theme in two volumes is a component of Encyclopedia of Energy Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Any human activity needs energy and renewable energies are always present all over the world. Each location has its own specific renewable potential and it is our task to develop the suitable technologies to profit, at local level, this potential to not only produce the needed energy but also create economic activity and wealth. Solar energy, in particular, has the highest potential among all existing renewable energies and, in the context of the energy, water and climate change global problems mankind will face in the coming years, the substantial integration of solar energy technologies into our societies will an absolute needs in the short to medium term. The number of applications of solar energy is simply huge, covering a very wide range of human activities. Some of these applications are already technically and economically viable, being others still at research or demonstration level. In addition, it has been demonstrated the important benefits solar energy can provide to any area with medium-high solar irradiation level: from sustainability to energy independence, as well as economic development and knowledge creation. Due to this, solar energy development, from photovoltaic to solar thermal or power applications, has been very intense during the last years in all the, so called, "Sun Belt". There is also the general consensus, at many countries, that we should accelerate the current solar energy pathway, increasing the research efforts to make economically feasible the applications that today are only technically feasible. This effort and the status of most of these applications have been discussed along this paper and within the articles of the topic. The Theme on Solar Energy Conversion and Photoenergy Systems with contributions from distinguished experts in the field, discusses solar energy related technologies and applications, some of which are already in commercial and practical applications and others are under research and testing level. The volumes provide an analysis and discussion about the reasons behind the current efforts of our society, considering both developed and developing countries, to accelerate the introduction of the huge solar energy potential into our normal daily lives. The two volumes also provide some basic information about the solar energy potential, history and the amazing trip of a photon from its creation in the Sun until its arrival to the Earth. These two volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.

In addition to the nuclear power industry, the nuclear field has extensive projects and activities in the areas of research reactors, medical isotope production, decommissioning, and remediation of contaminated sites. Managing nuclear projects focuses on the management

aspects of nuclear projects in a wide range of areas with emphasis on process, requirements, and lessons learned. Part one provides a general overview of the nuclear industry including basic principles for managing nuclear projects, nuclear safety culture, management of worker risk, training, and management of complex projects. Part two focuses on managing reactor projects with discussion on a variety of topics including management of research reactor projects, medical radioisotope production, power reactor modifications, power uprates, outage management, and management of nuclear-related R&D. Chapters in part three highlight the areas of radioactive waste and spent fuel management, reactor decommissioning, and remediation of radioactively contaminated sites. Finally, part four explores regulation, guidance and emergency management in the nuclear industry. Chapters discuss quality assurance and auditing programs, licensing procedures for nuclear installations, emergency preparedness, management of nuclear crises, and international nuclear cooperation. With its distinguished editor and contributors, Managing Nuclear Projects is a valuable resource for project managers, plant managers, engineers, regulators, training professionals, consultants, and academics. Examines the basic principles of managing nuclear projects focussing on processes and requirements Discusses the management of reactor projects Explores regulation, guidance and emergency management in the nuclear

Membrane Technologies for Biorefining highlights the best practices needed for the efficient and environmentally-compatible separation techniques that are fundamental to the conversion of biomass to fuels and chemicals for use as alternatives to petroleum refining. Membrane technologies are increasingly of interest in biorefineries due to their modest energy consumption, low chemical requirements, and excellent separation efficiency. The book provides researchers in academia and industry with an authoritative overview of the different types of membranes and highlights the ways in which they can be applied in biorefineries for the production of chemicals and biofuels. Topics have

been selected to highlight both the variety of raw materials treated in biorefineries and the range of biofuel and chemical end-products. Presents the first book to focus specifically on membrane technologies in biorefineries Provides a comprehensive overview of the different types of membranes and highlight ways in which they can be applied in biorefineries for the production of chemicals and biofuels Topics selected highlight both the variety of raw materials treated using membranes in biorefineries and the range of biofuel and chemical endproducts

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical looping Provides a lucid explanation of advanced concepts and developments in calcium and chemical looping, high pressure systems, and alternative CO2 carriers Presents information on the market development, economics, and deployment of these systems

Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world's magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments Considers the pathway towards future development of magnetic fusion energy power plants Contains experts contributions from editors and others who are well known in the field

Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

Electricity transmission and distribution (T&D) networks carry electricity from generation sites to demand sites. With the increasing penetration of decentralised and renewable energy systems, in particular variable power sources such as wind turbines, and the rise in demand-side technologies, the importance of innovative products has never been greater. Eco-design approaches and standards in this field are aimed at improving the performance as well as the overall sustainability of T&D network equipment. This multidisciplinary reference provides coverage of developments and lessons-learned in the fields of eco-design of innovation from product-specific issues to system approaches, including case studies featuring problem-solving methodologies applicable to electricity transmission and distribution networks. Discusses key environmental issues and methodologies for eco-design, and applies this to development of equipment for electricity transmission and distribution. Provides analysis of using and assessing advanced equipment for wind energy systems. Includes reviews of the energy infrastructure for demand-side management in the US and Scandinavia.

Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels provides updated information on flexible fuel energy generation, the process by which one or more fuels can be combusted in the same boiler or turbine to generate power. By adapting or building boilers and turbines to accept multiple fuel sources, they can be co-fired with biomass and waste derived fuels, allowing a reduction in carbon output, thus providing cleaner energy. Fuel flexibility is becoming more important in a world of diminishing fossil fuel stocks. Many countries are investing in the development of more efficient fuel flexible boilers and turbines, and their use is becoming more prevalent in industry as well. This book provides comprehensive coverage of flexible fuel energy generation across all potential fuel types, and was written by a selection of experts in the field who discuss the types of fuels which can be used in fuel flexible energy generation, from solid fuels to biomass fuels, the preparation of fuels to be used in fuel flexible operations, that includes their handling and transport, and combustion and conversion technologies with chapters ranging from large-scale coal gasification to technology options and plant design issues. Focuses on fuel flexibility across all potential fuel types Includes thorough treatment of the technology being developed to allow for fuel flexibility Written by leading experts in the field Provides an essential text for R&D managers in firms which produce boilers or turbines, those who work in the fuel industry, and academics working in engineering departments on energy generation

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. Provides systematic and

detailed coverage of the processes and technologies being used for biofuel production Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage Reviews the production of both first and second generation biofuels Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Explores recent developments in heat transfer and thermal control applied to modern high-temperature gas turbine systems. It examines experimental results and techniques computational studies and methods and design recommendations. Aspects of heat transfer in rotating machinery are studied as well as thermal aspects of other sections of the turbine (e.g. the compressor). Proceedings of an August 2000 conference.

There has been a remarkable difference in the research and development regarding gas turbine technology for transportation and power generation. The former remains substantially florid and unaltered with respect to the past as the superiority of air-breathing engines compared to other technologies is by far immense. On the other hand, the world of gas turbines (GTs) for power generation is indeed characterized by completely different scenarios in so far as new challenges are coming up in the latest energy trends, where both a reduction in the use of carbon-based fuels and the raising up of renewables are becoming more and more important factors. While being considered a key technology for base-load operations for many years, modern stationary gas turbines are in fact facing the challenge to balance electricity from variable renewables with that from flexible conventional power plants. The book intends in fact to provide an updated picture as well as a perspective view of some of the abovementioned issues that characterize GT technology in the two different applications: aircraft propulsion and stationary power generation. Therefore, the target audience for it involves design, analyst, materials and maintenance engineers. Also

manufacturers, researchers and scientists will benefit from the timely and accurate information provided in this volume. The book is organized into three main sections including 10 chapters overall: (i) Gas Turbine and Component Performance, (ii) Gas Turbine Combustion and (iii) Fault Detection in Systems and Materials.

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. Provides an in-depth look into new research on the development of more efficient, long distance travel batteries Contains an introductory section on the market for battery and hybrid electric vehicles Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals. Gas-Turbine Power Generation is a concise, up-to-date, and readable guide providing an introduction to gas turbine power generation technology. It includes detailed descriptions of gas fired generation systems, demystifies the functions of gas fired technology, and explores the economic and environmental risk factors Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide that will help them establish a reliable power supply as they also account for both social and economic objectives. Provides a concise, up-to-date, and readable guide on gas turbine power generation technology Focuses on the evolution of gas-fired power generation using gas turbines Evaluates the economic and environmental viability of the system with concise diagrams and accessible explanations

Copyright: 8a8ed277f31d586b6bd788675dddc62b