Mechanics Of Flight

Published March 2004 Noted for its highly readable style, the new edition of this bestseller provides an updated overview of aeronautical and aerospace engineering. Introduction to Flight blends history and biography with discussion of engineering concepts, and shows the development of flight through this perspective.New content includes coverage of: the last days of the Concorde and the centennial of the Wright Brothers' flight; the Mariner and Voyager 2 missions; geometric and geopotential altitudes; and uninhabited aerial vehicles [UAVs]. Preview Boxes, new to this edition, provide students with a snapshot of what they are to learn in each chapter.

Covers all aspects of flight performance of modern day high-performance aircraft.

The book focuses on the synthesis of the fundamental disciplines and practical applications involved in the investigation, description, and analysis of aircraft flight including applied aerodynamics, aircraft propulsion, flight performance, stability, and control. The book covers the aerodynamic models that describe the forces and moments on maneuvering aircraft and provides an overview of the concepts and methods used in flight dynamics. Computational methods are widely used by the practicing aerodynamicst, and the book covers computational fluid dynamics techniques used to improve understanding of the physical models that underlie computational methods.

This textbook addresses the elementary concepts of

flight mechanics, everything from the equations of motion to aircraft performance.

Themechanicsofspace?ightisan

olddiscipline.Itstopicoriginallywasthemotion of planets, moons and other celestial bodies in gravitational ?elds. Kepler's (1571 - 1630) observations and measurements have led to probably the ?rst mathematical description of planet's motion. Newton (1642 - 1727) gave then, with the devel- ment of his principles of mechanics, the physical explanation of these motions. Since then man has started in the second half of the 20th centuryto capture ph- ically the Space in the sense that he did develop arti?cial celestial bodies, which he brought into Earth's orbits, like satellites or space stations, or which he did send to planets or moons of our planetary system, like probes, or by which p- ple were brought to the moon and back, like capsules. Further he developed an advanced space transportation system, the U.S. Space Shuttle Orbiter, which is the only winged space vehicle ever in operation. In the last two and a half decades there were several activities in the world in order to succeed the U.S. Orbiter, like the HERMES project in Europe, the HOPE project in Japan, the X-33, X-34 and X-37 studies and demonstrators in the United States and the joint U.S. - European project X-38. However, all these projects were cancelled. The motion of these vehicles can be described by Newton's equation of motion.

Flight Dynamics takes a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. While

presenting traditional material that is critical to understanding aircraft motions, it does so in the context of modern computational tools and multivariable methods. Robert Stengel devotes particular attention to models and techniques that are appropriate for analysis, simulation, evaluation of flying gualities, and control system design. He establishes bridges to classical analysis and results, and explores new territory that was treated only inferentially in earlier books. This book combines a highly accessible style of presentation with contents that will appeal to graduate students and to professionals already familiar with basic flight dynamics. Dynamic analysis has changed dramatically in recent decades, with the introduction of powerful personal computers and scientific programming languages. Analysis programs have become so pervasive that it can be assumed that all students and practicing engineers working on aircraft flight dynamics have access to them. Therefore, this book presents the principles, derivations, and equations of flight dynamics with frequent reference to MATLAB functions and examples. By using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers. Introductions to aerodynamics, propulsion, structures, flying gualities, flight control, and the atmospheric and gravitational environment accompany the development of the aircraft's dynamic equations. Explore Key Concepts and Techniques Associated with Control Configured Elastic Aircraft A rapid rise in air travel in the past decade is driving the development of newer, more energy-efficient, and malleable aircraft.

Typically lighter and more flexible than the traditional rigid body, this new ideal calls for adaptations to some conventional concepts. Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft addresses the intricacies involved in the dynamic modelling, simulation, and control of a selection of aircraft. This book covers the conventional dynamics of rigid aircraft, explores key concepts associated with control configured elastic aircraft, and examines the use of linear and non-linear model-based techniques and their applications to flight control. In addition, it reveals how the principles of modeling and control can be applied to both traditional rigid and modern flexible aircraft. Understand the Basic Principles Governing Aerodynamic Flows This text consists of ten chapters outlining a range of topics relevant to the understanding of flight dynamics, regulation, and control. The book material describes the basics of flight simulation and control, the basics of nonlinear aircraft dynamics, and the principles of control configured aircraft design. It explains how elasticity of the wings/fuselage can be included in the dynamics and simulation, and highlights the principles of nonlinear stability analysis of both rigid and flexible aircraft. The reader can explore the mechanics of equilibrium flight and static equilibrium, trimmed steady level flight, the analysis of the static stability of an aircraft, static margins, stick-fixed and stick-free, modeling of control surface hinge-moments, and the estimation of the elevator for trim. Introduces case studies of practical control laws for several modern aircraft Explores the evaluation of aircraft dynamic response Applies

MATLAB®/Simulink® in determining the aircraft's response to typical control inputs Explains the methods of modeling both rigid and flexible aircraft for controller design application Written with aerospace engineering faculty and students, engineers, and researchers in mind, Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft serves as a useful resource for the exploration and study of simulation of flight dynamics.

The second edition of Flight Stability and Automatic Control presents an organized introduction to the useful and relevant topics necessary for a flight stability and controls course. Not only is this text presented at the appropriate mathematical level, it also features standard terminology and nomenclature, along with expanded coverage of classical control theory, autopilot designs, and modern control theory. Through the use of extensive examples, problems, and historical notes, author Robert Nelson develops a concise and vital text for aircraft flight stability and control or flight dynamics courses. Thorough coverage of space flight topics with selfcontained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and

interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a "computational toolbox" composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering. This book presents flight mechanics of aircraft, spacecraft, and rockets to technical and non-technical readers in simple terms and based purely on physical principles. Adapting an accessible and lucid writing style, the book retains the scientific authority and conceptual substance of an engineering textbook without requiring a background in physics or engineering mathematics. Professor Tewari explains relevant physical principles of flight by straightforward examples and meticulous diagrams and figures. Important aspects of both atmospheric and space flight mechanics are covered, including performance, stability and control, aeroelasticity, orbital mechanics, and altitude control. The book describes airplanes, gliders, rotary wing and

flapping wing flight vehicles, rockets, and spacecraft and visualizes the essential principles using detailed illustration. It is an ideal resource for managers and technicians in the aerospace industry without engineering degrees, pilots, and anyone interested in the mechanics of flight.

This book focuses on flight vehicles and their navigational systems, discussing different forms of flight structures and their control systems, from fixed wings to rotary crafts. Software simulation enables testing of the hardware without actual implementation, and the flight simulators, mechanics, glider development and navigation systems presented here are suitable for labbased experimentation studies. It explores laboratory testing of flight navigational sensors, such as the magnetic, acceleration and Global Positioning System (GPS) units, and illustrates the six-axis inertial measurement unit (IMU) instrumentation as well as its data acquisition methodology. The book offers an introduction to the various unmanned aerial vehicle (UAV) systems and their accessories, including the linear quadratic regulator (LQR) method for controlling the rotorcraft. It also describes a Matrix Laboratory (MATLAB) control algorithm that simulates and runs the lab-based 3 degrees of freedom (DOF) helicopter, as well as LabVIEW software used to validate controller design and data acquisition. Lastly, the book explores future developments in aviation techniques. Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of

equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.

The main substance of the book begins with a background review of Einstein's Special Theory of Relativity as it pertains to relativistic flight mechanics and space travel. Next, the book moves into relativistic rocket mechanics and related subject matter. Finally, the primary subjects regarding space travel are covered in some depth-a crescendo for the book. This is followed by a geometric treatment of relativistic effects by using Minkowski diagrams and K-calculus. The book concludes with brief discussions of other prospective, even exotic, transport systems for relativistic space travel. An appendix is provided to cover tables of useful data and unit conversions together with mathematical identities and other information used in this book. Annotated references are provided for further reading. A detailed glossary and index are given at the beginning and end of the book, respectively. To provide a better understanding of the subject matter presented in the book, simple problems with answers are provided at the end of each of the four substantive chapters.

Flight Performance of Aircraft is an academic book that directly corresponds to real-life situations. This text presents performance analysis of almost all the phases of flight, including takeoff, climb, cruise, turn, descent, and landing. A list of problems is provided at the end of each chapter to encourage problem solving and theory comprehension.

Written by international experts from many disciplines, this

multi-volume treatise is a comprehensive survey of the established data and principles of avian biology. The volumes thoroughly review knowledge of the 8600 living species of birds-knowledge resulting from advances in instrumentation and technology and improved transportation facilities that permit more detailed, far-ranging field studies than ever before. The emphasis is on the significance of avian biological research to such areas of biology as ethology, ecology, population biology, evolutionary biology, and physiological ecology.

The design, development, analysis, and evaluation of new aircraft technologies such as fly by wire, unmanned aerial vehicles, and micro air vehicles, necessitate a better understanding of flight mechanics on the part of the aircraftsystems analyst. A text that provides unified coverage of aircraft flight mechanics and systems concept will go a lon More frisbees are sold each year than baseballs, basketballs and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Since many of the examples are recreational, anyone who enjoys these activities will likely find it profitable and enjoyable. In addition to spinning objects of various shapes, several exotic manned aircraft with disc planforms have been proposed and a prototypes built - these include a Nazi 'secret weapon' and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by coupling aerodynamics with gyrodynamics. The narrative,

supported by equations and graphs, explains how the shape and throw of a boomerang relates to its trajectory. The natural world presents still other examples, namely the samaras or 'seed-wings' of many tree species, which autorotate during their descent, like a helicopter whose engine has failed. The flight performance of these spinning wings directly affects the dispersal and thus the evolutionary competitiveness of the trees concerned. Samara-type configurations are also considered for instrumentation and other payload dispersal applications. In short, the book discusses a range of familiar, connected, but largely undeveloped, topics in an accessible, but complete, manner. From the reviews of the first edition: "In his fascinating book Spinning Flight, Ralph Lorenz provides a rich feast of ... examples of spinning bodies The book is well organized The discussion in the book ... should be accessible to readers with some elementary understanding of aerodynamic principles. For the expert, the book is full of open problems Its scope is extensive In this respect, there may be something for everyone within its attractively designed cover" (H. K. Moffatt, Nature, Vol. 444, December, 2006) "If you liked physics at school, then this book is for you. It concerns itself with flying objects that spin through the air, and even tells you how to impress your friends with the biomechanics of Frisbees. ... there is plenty of information at all levels, and the book has a wealth of detail that only an aerospace engineer like Lorenz could have come up with." (Len Fisher, BBC Focus, February, 2007) This revised and updated edition provides a clear and nonmathematical description of the principles of aerodynamics and mechanics of flight. Taking a qualitative rather than quantitative approach, the text provides material for courses from technician to degree level. The text contains examples of recent innovations, and although it excludes mathematical analysis, the study does provide one or two simple formulae

as a means of defining important terms, such as lift coefficient and Reynolds number, which are an essential part of vocabulary of aeronautics. Structural influences are given brief consideration.

It has been great fun to write this book, even though it has taken longer than planned, and occasionally been exasperating. The most difficult problem was deciding what to exclude among so many interesting things, because the available material usually exceeded the space. Because a book like this covers so many aspects, each component must be limited. This book is intended for graduate and undergraduate students as well as professional scientists who want to work with animal flight or to gain some insight into flight mechanics, aerodynamics, energetics, physiology, morpho logy, ecology and evolution. My aim has not been to give the whole mathe matical explanation of flight, but to provide an outline and summary of the main theories for the understanding of how aerofoils respond to an airflow. I also hope to give the reader some insight into how flight morphology and the various wing shapes have evolved and are adapted to different ecological niches and habitats. "Flight is the essence of birdness. I strive to illustrate the beauty and complexity of avian flight." -- Peter Cavanagh 100 Flying Birds: Photographing the Mechanics of Flight offers a vivid and varied glimpse into the world of birds. A white-tailed eagle plummeting through a Japanese sky, a brown pelican striking a silhouette against an Ecuadorian sunset, an Atlantic puffin carrying its fish dinner above the Scottish coast, or a keel-billed toucan gliding through a Costa Rican jungle canopy; readers will marvel at the splendor of birds in flight while learning the techniques to capture these gravity-defying moments from a world-class nature photographer. For each picture, author and photographer Peter Cavanagh shares his most evocative thoughts: the challenges of the shoot, the

beauty of the location, and the curiosities of the species. Bird people will enjoy the bird photographs and facts, travelers will gobble up the tales of distant parts, and photographers will absorb the technical details. For instance, readers might be surprised to see that a very slow shutter speed can freeze the motion of hummingbird wings. Peter Cavanagh has collected 100 beautiful photos spanning a wide range of species. The subjects of each of the 11 chapters are: Eagles Hummingbirds Gulls and Terns Small Waterbirds Large Waterbirds Ducks, Geese and Swans Raptors Condors and Corvids Cranes Songbirds Favorites Flight mechanics is the application of Newton's laws to the

Flight mechanics is the application of Newton's laws to the study of vehicle trajectories (performance), stability, and aerodynamic control. This volume details the derivation of analytical solutions of airplane flight mechanics problems associated with flight in a vertical plane. It covers trajectory analysis, stability, and control. In addition, the volume presents algorithms for calculating lift, drag, pitching moment, and stability derivatives. Throughout, a subsonic business jet is used as an example for the calculations presented in the book.

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for Page 12/25

real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers. 'Nature's Flyers' is a detailed account of the current scientific understanding of the primary aspects of flight in nature. The author explains the physical basis of flight, drawing upon bats, birds, insects, pterosaurs and even winged seeds.

Mechanics of Flight is an ideal introduction to the basic principles of flight for students embarking on courses in aerospace engineering, student pilots, Page 13/25

apprentices in the industry and anyone who is simply interested in aircraft and space flight. Written in a straightforward and jargon-free style, this popular classic text makes the fascinating topic of aircraft flight engaging and easy to understand. Starting with an overview of the relevant aspects of mechanics, the book goes on to cover topics such as air and airflow, aerofoils, thrust, level flight, gliding, landing, performance, manoeuvres, stability and control. Important aspects of these topics are illustrated by a description of a trial flight in a light aircraft. The book also deals with flight at transonic and supersonic speeds, and finally orbital and space flight. A vital resource for pilots, instructors, and students, from the most trusted source of aeronautic information.

Classic text analyzes trajectories of aircraft, missiles, satellites, and spaceships in terms of gravitational forces, aerodynamic forces, and thrust. Topics include general principles of kinematics, dynamics, aerodynamics, propulsion; quasi-steady and non-steady flight; and applications. 1962 edition. Mechanics of Flight is an ideal introduction to the basic principles of flight for students embarking on courses in aerospace engineering, student pilots, apprentices in the industry and anyone who is simply interested in aircraft and space flight. Written in a straightforward and jargon-free style, this popular classic text makes the fascinating topic of aircraft Page 14/25

flight engaging and easy to understand. Starting with an overview of the relevant aspects of mechanics, the book goes on to cover topics such as air and airflow, aerofoils, thrust, level flight, gliding, landing, performance, manoeuv.

Aircraft operating as so-called High Altitude Platform Systems (HAPS) have been considered as a complementary technology to satellites since several vears. These aircraft can be used for similar communication and monitoring tasks while operating at a fraction of the cost. Such concepts have been successfully tested. Those include the AeroVironment Helios and the Airbus Zephyr, with an endurance of nearly 624 hours (26 days). All these HAPS aircraft have a high-aspect-ratio wing using lightweight construction. In gusty atmosphere, this results in high bending moments and high structural loads, which can lead to overloads. Aircraft crashes, for example from Google's Solara 50 or Facebook's Aquila give proof of that fact. Especially in the troposphere, where the active weather takes place, gust loads occur, which can lead to the destruction of the structure. The Airbus Zephyr, the only HAPS aircraft without flight accidents, provides only a very small payload. Thus it does not fully comply with the requirements for future HAPS aircraft. To overcome the shortcomings of such single-wing aircraft, so-called multibody aircraft are considered to be an alternative. The concept Page 15/25

assumes multiple aircraft connected to each other at their wingtips. It goes back to the German engineer Dr. Vogt. In the United States, shortly after the end of World War II, he experimented with the coupling of manned aircraft. This resulted in a high-aspectratio wing for the aircraft formation. The range of the formation could be increased correspondingly. The engineer Geoffrey S. Sommer took up Vogt's idea and patented an aircraft configuration consisting of several unmanned aerial vehicles coupled at their wingtips. However, the patent does not provide any insight into the flight performance, the flight mechanical modeling or the control of such an aircraft. Single publications exist that deal with the performance of coupled aircraft. A profound, complete analysis, however, is missing so far. This is where the present work starts. For the first time, a flying vehicle based on the concept of the multibody aircraft will be analyzed in terms of flight mechanics and flight control. In a performance analysis, the aircraft concept is analyzed in detail and the benefits in terms of bending moments and flight performance are clearly highlighted. Limits for operation in flight are shown considering aerodynamic optimal points. The joints at the wingtips allow a roll and pitch motion of the individual aircraft. This results in additional degrees of freedom for the design through the implementation of different relative pitch and bank angles. For example, using individual pitch Page 16/25

angles for individual aircraft further decreases the induced drag and increases flight performance. Because the lift is distributed symmetrically, but not homogenously along the wingspan, a lateral trim of the individual aircraft in formation flight becomes necessary. The thesis presents a new method to implement this trim by moving the battery mass along half the wingspan, which avoids additional parasite drag. Further, a complete flight dynamics model is provided and analyzed for aircraft that are mechanically connected at their wingtips. To study this model in detail, a hypothetical torsional and bending spring between the aircraft is introduced. If the spring constants are very high, the flight dynamics model has properties similar to those of an elastic aircraft. Rigid-body and formation eigenmotions can be clearly distinguished. If the spring constants are reduced towards zero, which represents the case of the multibody aircraft, classical flight mechanics eigenmotions and modes resulting from the additional degrees of freedom are coupled. This affects the eigenstructure of the aircraft. Hence, normal motions with respect to the inertial space as known from a rigid aircraft cannot be observed anymore. The plant also reveals unstable behavior. Using the non-linear flight dynamics model, flight controllers are designed to stabilize the plant and provide the aircraft with an eigenstructure similar to conventional aircraft.

Different controller design methods are used. The flight controller shall further maintain a determined shape of the flight formation, it shall control flight, bank and pitch angles, and it shall suppress disturbances. Flight control theories in the time domain (Eigenstructure assignment) and in the frequency domain (H-infinity loop-shaping) are considered. The resulting inner-control loops yield a multibody aircraft behavior that is similar to the one of a rigid aircraft. For the outer-control loops, classical autopilot concepts are applied. Overall, the flight trajectory of the multibody aircraft above ground is controlled and, thus, an actual operation as HAPS is possible. In the last step, the flight controller is successfully validated in non-linear simulations with complete flight dynamics. Flugzeuge in der Form von sogenannten Höhenplattformen (engl. High-Altitude Platform Systems, HAPS) werden seit einigen Jahren als kostengünstige Ergänzung zu teuren Satelliten betrachtet. Diese Flugzeuge können für ähnliche Kommunikations- und überwachungsaufgaben eingesetzt werden. Zu den gegenwärtigen Konzepten solcher Fluggeräte, die bereits erfolgreich im Flugversuch eingesetzt wurden, zählen der Helios von AeroVironment und der Airbus Zephyr, der eine Flugdauer von fast 624 Stunden (26 Tagen) erreicht hat. Alle diese HAPS-Flugzeuge besitzen einen Flügel langer Streckung, der in Leichtbauweise

konstruiert ist. Hieraus resultieren in böiger Atmosphäre hohe Biegemomente und starke strukturelle Belastungen, die zu überbelastungen führen können. Flugunfälle beispielsweise von Googles Solara 50 oder Facebooks Aquila belegen dies. Insbesondere in der Troposphäre, in der das aktive Wetter stattfindet, treten Böenlasten auf, die die Struktur zerstören können. Der Airbus Zephyr, der bisher als einziges HAPS-Flugzeug frei von Flugunfällen ist, besitzt nur eine sehr geringe Nutzlast. Daher kann er die Anforderungen an zukünftige HAPS-Flugzeuge nicht vollständig erfüllen. Um die Schwachstellen solcher Ein-Flügel-Konzepte zu überwinden, wird in dieser Arbeit ein alternatives Flugzeugkonzept betrachtet, das als Mehrkörperflugzeug bezeichnet wird. Das Konzept geht von mehreren, an den Flügelspitzen miteinander verbundenen Flugzeugen aus und beruht auf Ideen des deutschen Ingenieurs Dr. Vogt. Dieser hatte in den USA kurz nach Ende des Zweiten Weltkrieges bemannte Flugzeuge aneinanderkoppeln lassen. Hierdurch ergab sich ein Flugzeugverbund mit einem Flügel langer Streckung. Damit konnte die Reichweite des Verbundes gesteigert werden. Geoffrey S. Sommer griff die Idee von Vogt auf und lies sich eine Flugzeugkonfiguration patentieren, die aus mehreren, unbemannten Flugzeugen besteht, die an den Enden der Tragflächen miteinander gekoppelt Page 19/25

sind. Die Patentschrift gibt jedoch keinen Einblick in die Flugleistungen, die flugmechanische Modellierung oder die Regelung eines solchen Fluggerätes. Vereinzelt existieren Veröffentlichungen, die sich mit den Flugleistungen von gekoppelten Luftfahrzeugen beschäftigen. Eine tiefgreifende, vollständige flugmechanische Analyse fehlt jedoch bisher. Hier setzt die vorliegende Arbeit an. Ein Fluggerät basierend auf dem Konzept des Mehrkörperflug-zeugs wird erstmalig hinsichtlich der Flugmechanik und Flugregelung untersucht. In einer Flugleistungsbetrachtung wird das Flugzeugkonzept genau analysiert und die Vorteile hinsichtlich der Biegemomente und der Flugleistungen klar herausgestellt. Die Grenzen des Einsatzes im Flugbetrieb werden mithilfe aerodynamischer Optimalpunkte aufgezeigt. über die Lager an den Flügelspitzen, die eine relative Roll- und Nickbewegung der Flugzeuge untereinander ermöglichen, ergeben sich durch die Einstellung unterschiedlicher Längslage- und Hängewinkel zusätzliche Freiheitsgerade im Entwurf. Die Verwendung unterschiedlicher Nicklagewinkel der einzelnen Flugzeuge reduziert beispielsweise den induzierten Widerstand weiter und steigert die Flugleistung. Durch die symmetrische, entlang der Spannweite jedoch nicht homogene Auftriebsverteilung ist auch eine laterale Trimmung der einzelnen Flugzeuge in der Formation Page 20/25

notwendig. Hier stellt die Arbeit eine neuartige Möglichkeit vor, um diese Trimmung ohne zusätzlichen parasitären Widerstand mittels Verschiebung der Batteriemasse entlang der Halbspannweite umzusetzen. Weiterhin wird ein vollständiges flugdynamisches Modell für über mechanische Lager verbundene Luftfahrzeuge aufgestellt und analysiert. Für diese Analyse wird eine hypothetische Torsions- und Biegefeder zwischen den Flugzeugen modelliert. Sind die Federsteifigkeiten hinreichend hoch, besitzt das flugdynamische Modell Eigenschaften, die einem elastischen Flugzeug entsprechen. Starrkörper- und elastische Eigenbewegungsformen sind in diesem Fall klar separiert. Bei immer weiterer Reduzierung, bis auf eine Federsteifigkeit von Null, kommt es zu Kopplungen zwischen den klassischen, flugmechanischen Eigenbewegungsformen und den Moden aus den zusätzlichen Freiheitsgraden. Dies stellt den Auslegungsfall für das Mehrkörperflugzeug dar. Hierbei verändert sich die Eigenstruktur (engl. eigenstructure) des Flugzeugs und normale, bei einem starren Flugzeug beobachtbare Bewegungen gegenüber dem inertialen Raum sind nicht mehr erkennbar. Zusätzlich zeigt die Strecke instabiles Verhalten. Basierend auf dem nichtlinearen, flugdynamischen Modell werden mit verschiedenen Methoden Regler entworfen, die die Regelstrecke stabilisieren und dem Flugzeug eine Page 21/25

Streckenstruktur zuweisen, die derjenigen klassischer Flugzeuge ähnelt. Zudem soll durch die Regler eine vorgegebene Form des Flugzeugverbundes beibehalten werden, die Fahrt, der Längs- und Rolllagewinkel sollen geregelt und Störungen unterdrückt werden. Als Auslegungsverfahren werden Theorien der Zustandsregelungen im Zeitbereich (Eigenstrukturvorgabe) und Frequenzbereich (Hinfinity loop-shaping) verwendet. Hierdurch wird durch die inneren Regelschleifen ein Verhalten des Mehrkörperflugzeugs erzielt, das dem eines starren Flugzeugs entspricht. Für die äußeren Regelschleifen werden anschließend klassische Konzepte von Autopiloten verwendet. Im Ergebnis ist eine Regelung des Flugweges über Grund des Mehrkörperflugzeugs und somit ein tatsächlicher Betrieb als HAPS möglich. Die Funktionalität des Reglers wird abschließend in nichtlinearen Simulationen mit vollständiger Flugdynamik verifiziert.

A single, comprehensive, in-depth treatment of both basic, and applied modern aerodynamics. Covers the fluid mechanics and aerodynamics of incompressible and compressible flows, with particular attention to the prediction of lift and drag characteristics of airfoils and wings and complete airplane configurations. Following an introduction to propellers, piston engines, and turbojet engines, methods are presented for analyzing the performance of an airplane throughout its operating regime. Also covers static and dynamic longitudinal and lateral-directional stability and control. Includes lift, drag, propulsion and stability and control data, numerical methods, and working graphs.

This treatment for upper-level undergraduates, graduate students, and professionals makes special reference to stability and control of airplanes, with extensive numerical examples covering a variety of vehicles. 260 illustrations. 1972 edition.

Beginning with a summary of the mechanics of flight, this book goes on to cover various aspects such as air and airflow, aerofoils, thrust, level flight, gliding, landing, etc. It will continue to be an excellent text for all student pilots.

Designed for introductory courses in aerodynamics, aeronautics and flight mechanics, this text examines the aerodynamics, propulsion, performance, stability and control of an aircraft. Major topics include lift, drag, compressible flow, design information, propellers, piston engines, turbojets, statics, dynamics, automatic stability and control. Two new chapters have been added to this edition on helicopters, V/STOL aircraft, and automatic control.

Aimed at students, faculty and professionals in the aerospace field, this book provides practical information on the development, analysis, and control of a single and/or multiple spacecraft in space. This book is divided into two major sections: single and multiple satellite motion. The first section analyses the orbital mechanics, orbital perturbations, and attitude dynamics of a single

satellite around the Earth. Using the knowledge of a single satellite motion, the translation of a group of satellites called formation flying or constellation is explained. Formation flying has been one of the main research topics over the last few years and this book explains different control approaches to control the satellite attitude motion and/or to maintain the constellation together. The control schemes are explained in the discrete domain such that it can be easily implemented on the computer on board the satellite. The key objective of this book is to show the reader the practical and the implementation process in the discrete domain. Explains the orbital motion and principal perturbations affecting the satellite Uses the Ares V rocket as an example to explain the attitude motion of a space vehicle Presents the practical approach for different control actuators that can be used in a satellite

The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. About the author: After graduating Michael Cook joined Elliott Flight Automation as a Systems Engineer and

contributed flight control systems design to several major projects. Later he joined the College of Aeronautics to research and teach flight dynamics, experimental flight mechanics and flight control. Previously leader of the Dynamics, Simulation and Control Research Group he is now retired and continues to provide part time support. In 2003 the Group was recognised as the Preferred Academic Capability Partner for Flight Dynamics by BAE SYSTEMS and in 2007 he received a Chairman's Bronze award for his contribution to a joint UAV research programme. New to this edition: Additional examples to illustrate the application of computational procedures using tools such as MATLAB®, MathCad® and Program CC®. Improved compatibility with, and more expansive coverage of the North American notational style. Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence. An additional coursework study on flight control design for an unmanned air vehicle (UAV). Mechanics of FlightJohn Wiley & Sons Copyright: 12e603ca92c01599426117313f91f389