Mass Transfer B K Dutta Solutions

This volume brings together resources from the networks and communities that contribute to biochemistry education. Projects, authors, and practitioners from the American Chemical Society (ACS), American Society of Biochemistry and Molecular Biology (ASBMB), and the Society for the Advancement of Biology Education Research (SABER) are included to facilitate cross-talk among these communities. Authors offer diverse perspectives on pedagogy, and chapters focus on topics such as the development of visual literacy, pedagogies and practices, and implementation. Designed as an undergraduate-level textbook in Chemical Engineering, this studentfriendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design,

analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an indepth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers

This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practice with respect to the core areas of

chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book. PRINCIPLES OF MASS TRANSFER AND SEPERATION PROCESSESPHI Learning Pvt. Ltd.

Over the past few decades there has been a prolific increase in research and development in area of heat transfer, heat exchangers and their associated technologies. This book is a collection of current research in the above mentioned areas and discusses experimental, theoretical and calculation approaches and industrial utilizations with modern ideas and methods to study heat transfer for single and multiphase systems. The topics considered include various basic concepts of heat transfer, the fundamental modes of heat transfer (namely conduction, convection and radiation), thermophysical properties, condensation, boiling, freezing, innovative experiments, measurement analysis, theoretical models and simulations, with many real-world problems and important modern applications. The book is divided in four sections : "Heat Transfer in Micro Systems", "Boiling, Freezing and Condensation Heat Transfer", "Heat Transfer and its Assessment", "Heat Transfer Calculations", and each section discusses a wide variety of techniques, methods and applications in accordance with the subjects. The combination of theoretical and experimental investigations with many important practical applications of current interest will make this book of interest to researchers, scientists, engineers and graduate students, who make use of experimental and theoretical investigations, assessment and enhancement techniques in this multidisciplinary field as well as to researchers in mathematical modelling, computer simulations and information sciences, who make use of experimental and theoretical investigations as a means of critical assessment of models and results derived from advanced numerical simulations and improvement of the developed models and numerical methods.

In the past ten years, heteroepitaxy has continued to increase in importance with the explosive growth of the electronics industry and the development of a myriad of heteroepitaxial devices for solid state lighting, green energy, displays, communications, and digital computing. Our ever-growing understanding of the basic physics and chemistry underlying heteroepitaxy, especially lattice relaxation and dislocation dynamic, has enabled an ever-increasing emphasis on metamorphic devices. To reflect this focus, two all-new chapters have been included in this new edition. One chapter addresses metamorphic buffer layers, and the other covers metamorphic devices. The remaining seven chapters have been revised extensively with new material on crystal symmetry and relationships, III-nitride materials, lattice relaxation physics and models, in-situ characterization, and reciprocal space maps.

Revised extensively ad updated with several new topics, this book discusses the principles and applications of "Heat and Mass Tansfer". It is written with extensive pedagogy, clear explanations adn examples throughout to elucidate the concepts and facilitate problem solving. This concise and systematically organized text, now in its second edition, gives a clear insight into various membrane separation processes. It covers the fundamentals as well as the recent developments of different processes along with their industrial applications and the products. It includes the basic principles, operating parameters, membrane hardware, flux equation, transport mechanism, and applications of membrane-based technologies. Membrane

separation processes are largely rate-controlled separations which require rate analysis for complete understanding. Moreover, a higher level of mathematical analysis, along with the understanding of mass transfer, is also required. These are amply treated in different chapters of the book to make the students comprehend the membrane separation principles with ease. This textbook is primarily designed for undergraduate students of chemical engineering, biochemical engineering and biotechnology for the course in membrane separation processes. Besides, the book will also be useful to process engineers and researchers. KEY FEATURES • Provides sufficient number of examples of industrial applications related to chemical, metallurgical, biochemical and food processing industries. • Focuses on important biomedical applications of membrane-based technologies such as blood oxygenator, controlled drug delivery, plasmapheresis, and bioartificial organs. • Includes chapter-end short questions and problems to test students' comprehension of the subject. NEW TO THIS EDITION • A new section on membrane cleaning is included. Membrane fabrication methods are supplemented with additional information (Chapter 2). • Additional information on silt density index, forward osmosis and sea water desalination (Chapter 3). • Physicochemical parameters affecting nanofiltration, determination of various resistances using resistance in series model and few more industrial applications with additional short questions (Chapter 4). • Membrane crosslinking methods used in pervaporation, factors affecting pervaporation and few more applications (Chapter 9). • Membrane distillation, membrane reactor with different modules, types of membranes and reactions for membrane reactor (Chapter 13). This book introduces the fundamental principles of the mass transfer phenomenon and its diverse applications in process industry. It covers the full spectrum of techniques for chemical

separations and extraction. Beginning with molecular diffusion in gases, liquids and solids within a single phase, the mechanism of inter-phase mass transfer is explained with the help of several theories. The separation operations are explained comprehensively in two distinct ways—stage-wise contact and continuous differential contact. The primary design requirements of gas–liquid equipment are discussed. The book provides a detailed discussion on all individual gas–liquid, liquid–liquid, solid–gas, and solid–liquid separation processes. The students are also exposed to the underlying principles of the membrane-based separation processes. The book is replete with real applications of separation processes and equipment. Problems are worked out in each chapter. Besides, problems with answers, short questions, multiple choice questions with answers are given at the end of each chapter. The text is intended for a course on mass transfer, transport and separation processes prescribed for the undergraduate and postgraduate students of chemical engineering.

Completely rewritten to enhance clarity, this third edition provides engineers with a strong understanding of the field. With the help of an additional co–author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration, and centrifugation, including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well. In addition, frequent references are made to the software products and simulators that will help engineers find the solutions they need.

This textbook is targetted to undergraduate students in chemical engineering, chemical technology, and biochemical engineering for courses in mass transfer, separation processes,

transport processes, and unit operations. The principles of mass transfer, both diffusional and convective have been comprehensively discussed. The application of these principles to separation processes is explained. The more common separation processes used in the chemical industries are individually described in separate chapters. The book also provides a good understanding of the construction, the operating principles, and the selection criteria of separation equipment. Recent developments in equipment have been included as far as possible. The procedure of equipment design and sizing has been illustrated by simple examples. An overview of different applications and aspects of membrane separation has also been provided. 'Humidification and water cooling', necessary in every process indus-try, is also described. Finally, elementary principles of 'unsteady state diffusion' and mass transfer accompanied by a chemical reaction are covered. SALIENT FEATURES : • A balanced coverage of theoretical principles and applications. • Important recent developments in mass transfer equipment and practice are included. • A large number of solved problems of varying levels of complexities showing the applications of the theory are included. • Many end-chapter exercises. • Chapter-wise multiple choice questions. • An Instructors manual for the teachers. Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials. Features specific details on many membrane characterization techniques for various membrane materials of Page 8/20

industrial and academic interest Contains examples of international best practice techniques for the evaluation of several membrane parameters, including pore size, charge, and fouling Discusses various membrane models more suitable to a specific application Provides examples of ab initio calculations for the design, optimization, and scale-up of processes based on characterization data

This classic text is an exploration of the practical aspects of thermodynamics and heat transfer. It was designed for daily use and reference for system design and for troubleshooting common engineering problems-an indispensable resource for practicing process engineers. Separation Process Principles with Applications Using Process Simulator, 4th Edition is the most comprehensive and up-to-date treatment of the major separation operations in the chemical industry. The 4th edition focuses on using process simulators to design separation processes and prepares readers for professional practice. Completely rewritten to enhance clarity, this fourth edition provides engineers with a strong understanding of the field. With the help of an additional co-author, the text presents new information on bioseparations throughout the chapters. A new chapter on mechanical separations covers settling, filtration and centrifugation including mechanical separations in biotechnology and cell lysis. Boxes help highlight fundamental equations. Numerous new examples and exercises are integrated throughout as well.

Mathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn

from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.

You can maximize industrial profitability by choosing the right separation process with this authoritative guide. This book will help engineers, chemists, managers, and technicians in the chemical, petroleum, pharaceutical, food, and paper industries maximize profitability by optimizing performance of separation processes. Focusing on the latest distillation, extraction, adsorption, and membrane processes, this up-to-the-minute guide helps you select a cost-effective process; choose a cost-cutting configuration; keep up with cutting-edge technology; and follow up on your choices. Written by two of the leading separation process chemical engineers in the world, this handbook is truly worth its weight in gold to anyone involved in separation process technology.

Introduction - Conduction - Convection - Radiation - Heat Exchange Equipments - Evaporation - Diffusion - Distillation - Gas Absorption - Liquid Liquid Extraction - Crystallisation - Drying - Appendix I Try yourself - Appendix II Thermal conductivity data - Appendix III Steam tables This timely book is the first to provide a comprehensive overview of all important aspects of this modern technology with the focus on the "green aspect". The expert authors present everything from reactions without solvents to nanostructures for separation methods, from combinatorial chemistry on solid phase to dendrimers. The result is a ready reference packed full of valuable facts on the latest developments in the field - high-quality information otherwise *Page 10/20*

widely spread throughout articles and reviews. From the contents: * Green chemistry for sustainable development * New synthetic methodologies and the demand for adequate separation processes * New developments in separation processes * Future trends and needs It is a "must-have" for every researcher in the field.

This text is meant to fill a long felt need for a comprehensive and authoritative book on heat and mass transfer for students of Mechanical/Chemical/Aeronautical/Production/ Metallurgical engineering. The dual objective of understanding the physical phenomena involved and the ability to formulate and solve typical problems by an average student has been kept in mind while writing this book. In this text, an effort has been made to identify the similarities in both gualitative and guantitative approach, between heat transfer and mass transfer. This gives a better understanding of the phenomena of mass transfer. The subject matter has been developed to a sufficiently advanced stage in a logical and coherent manner with neat illustrations along with an adequate number of solved examples. A large number of problems (with answers) at the end of each chapter assist in the pedagogy. The book has been appended with a set of selected MCQs. The role of experimentation in the teaching of Heat and Mass Transfer is well established. Properly designed experiments reinforce the teaching of basic principles more thoroughly. Keeping this in mind one full chapter comprising 12 typical experiments forms another special feature of this text. Contents: Basic Concepts Fundamental Equations of Conduction One-Dimensional Steady State Heat Conduction Multi-Dimensional Steady State Conduction Transient Heat Conduction Fundamentals of Convective Heat Transfer Forced Convection Systems Natural Convection Thermal Radiation - Basic Relations Radiative Heat Exchange Between Surfaces Boiling and Condensation Heat Exchangers Page 11/20

Diffusion Mass Transfer Convective Mass Transfer Experiments in Engineering Heat and Mass Transfer.

The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details-and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and "debottlenecking" Chemical engineering design and society: ethics, professionalism, health, safety, and new "green engineering" techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Page 12/20

Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.

This textbook is intended for courses in heat transfer for undergraduates, not only in chemical engineering and related disciplines of biochemical engineering and chemical technology, but also in mechanical engineering and production engineering. The author provides the reader with a very thorough account of the fundamental principles and their applications to engineering practice, including a survey of the recent developments in heat transfer equipment. The three basic modes of heat transfer - conduction, convection and radiation - have been comprehensively analyzed and elucidated by solving a wide range of practical and design-oriented problems. A whole chapter has been devoted to explain the concept of the heat transfer coefficient to give a feel of its importance in tackling problems of convective heat transfer. The use of the important heat transfer correlations has been illustrated with carefully selected examples.

This book is written specially for the students of B.E./B.Tech. of Metallurgical and Materials Engineering. It also serves the needs of allied scientific disciplines at the undergraduate, graduate level and practising professional engineers

This Second Edition of the well-received work on design, construction, and operation of heat exchangers. Demonstrates how to apply theories of fluid mechanics and heat transfer to practical problems posed by design, testing, and installation of heat exchangers. Tables and Page 13/20

data have been brought up to date, and there is new material on problems of vibration and fouling, and on optimization of energy use in the chemical process and manufacturing industries. Covers all basic principles of heat exchanger design, and addresses many specialized situations encountered in engineering applications.

Market_Desc: • Chemical, Mechanical, Nuclear, Industrial Engineers Special Features: • Careful attention is paid to the presentation of the basic theory• Enhanced sections throughout text provide much firmer foundation than the first edition• Literature citations are given throughout for reference to additional material About The Book: The long-awaited revision of a classic! This new edition presents a balanced introduction to transport phenomena, which is the foundation of its long-standing success. Topics include mass transport, momentum transport and energy transport, which are presented at three different scales: molecular, microscopic and macroscopic.

This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook. The biology, biotechnology, chemistry, pharmacy and chemical engineering students at various university and engineering institutions are required to take the Biochemical Engineering course either as an elective or compulsory subject. This book is written keeping in mind the need for a text book on afore subject for students from both engineering and biology backgrounds. The main feature of this book is that it contains the solved problems, which help the students to understand the subject better. The book is divided into three sections: Enzyme mediated bioprocess, whole cell mediated bioprocess and the engineering principle in bioprocess. Dr. Rajiv Dutta is Professor in Biotechnology and Director, Amity Institute of Biotechnology, Lucknow. He earned his M. Tech. in Biotechnology and Engineering from the Department of Chemical Engineering, IIT, Kharagpur and Ph.D. in Bioelectronics from BITS, Pilani. He has taught Biochemical Engineering and Biophysics to B.E., M.E. and M.Sc. level student carried out advanced research in the area of Ion channels at the Department of Botany at Oklahoma State University, Stillwater and Department of Biological Sciences at Purdue University, West Lafayette, IN. He also holds the position of Nanion Technologies Adjunct Research Professor at Research Triangle Institute, RTP, NC. He had received various awards including JCI Outstanding Young Person of India and ISBEM Dr. Ramesh Gulrajani Memorial Award 2006 for outstanding research in electro physiology.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Concise, Easy-to-Use Guide to Designing Chemical Process Equipment and Evaluating Its Performance Trends such as shale-gas resource development call for a deeper understanding of chemical engineering equipment and design. Chemical Process Equipment Design complements leading texts by providing concise, focused coverage of these topics, filling a major gap in undergraduate chemical engineering education. Richard Turton and Joseph A. Shaeiwitz present relevant design equations, show how to analyze operation of existing equipment, and offer a practical methodology for designing new equipment and for solving common problems. Theoretical derivations are avoided in favor of working equations, practical computational strategies, and approximately eighty realistic worked examples. The authors identify which equation applies to each situation, and show exactly how to use it to design equipment. By the time undergraduates have worked through this material, they will be able to create preliminary designs for most process equipment found in a typical chemical plant that processes gases and/or liquids. They will also learn how to evaluate the performance of that equipment, even when operating conditions differ from the design case. Coverage includes Process fluid

mechanics: designing and evaluating pumps, compressors, valves, and other piping systems Process heat transfer: designing and evaluating heat exchange equipment Separation equipment: understanding fundamental relationships underlying separation devices, designing them, and assessing their performance Reactors: basic equations and specific issues relating to chemical reactor equipment design and performance Other equipment: preliminary analysis and design for pressure vessels, simple phase-separators (knock-out drums), and steam ejectors This guide draws on fifty years of innovative chemical engineering instruction at West Virginia University and elsewhere. It complements popular undergraduate textbooks for practical courses in fluid mechanics, heat transfer, reactors, or separations; supports senior design courses; and can serve as a core title in courses on equipment design.

"The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations."--BOOK JACKET.

Designed as a textbook for the undergraduate students of chemical engineering and related disciplines such as biotechnology, polymer technology, petrochemical engineering, electrochemical engineering, environmental engineering and safety engineering, the chief objective of the book is to prepare students to make analysis of chemical processes through calculations and to develop systematic problem-solving skills in them. The text presents the fundamentals of chemical engineering operations and processes in a simple style that helps the students to gain a thorough understanding of chemical process calculations. The book deals with the principles of stoichiometry to formulate and solve material and energy balance problems in processes with and without chemical reactions. With the help of examples, the book explains the construction and use of reference-substance plots, equilibrium diagrams, psychrometric charts, steam tables and enthalpy composition diagrams. It also elaborates on thermophysics and thermochemistry to acquaint the students with the thermodynamic principles of energy balance calculations. The book is supplemented with Solutions Manual for instructors containing detailed solutions of all chapter-end unsolved problems.NEW TO THE SECOND EDITION • Incorporates a new chapter on Bypass, Recycle and Purge Operations • Comprises updations in some sections and presents new sections on Future

Avenues and Opportunities in Chemical Engineering, Processes in Biological and Energy Systems • Contains several new worked-out examples in the chapter on Material Balance with Chemical Reaction • Includes GATE questions with answers up to the year 2016 in Objective-type questions KEY FEATURES • SI units are used throughout the book. • All basic chemical engineering operations and processes are introduced, and different types of problems are illustrated with worked-out examples. • Stoichiometric principles are extended to solve problems related to bioprocessing, environmental engineering, etc. • Exercise problems (more than 810) are organised according to the difficulty level and all are provided with answers.

Appropriate for one-year transport phenomena (also called transport processes) and separation processes course. First semester covers fluid mechanics, heat and mass transfer; second semester covers separation process principles (includes unit operations). The title of this Fourth Edition has been changed from Transport Processes and Unit Operations to Transport Processes and Separation Process Principles (Includes Unit Operations). This was done because the term Unit Operations has been largely superseded by the term Separation Processes which better reflects the present modern nomenclature being used. The main objectives and the format of the Fourth Edition remain the Page 19/20

same. The sections on momentum transfer have been greatly expanded, especially in the sections on fluidized beds, flow meters, mixing, and non-Newtonian fluids. Material has been added to the chapter on mass transfer. The chapters on absorption, distillation, and liquid-liquid extraction have also been enlarged. More new material has been added to the sections on ion exchange and crystallization. The chapter on membrane separation processes has been greatly expanded especially for gas-membrane theory.

Copyright: 1537da693c1edf4b42721af58beae55b