Linux For Embedded And Real Time Applications 3rd
Edition

This easy-to- follow textbook/reference guides the reader through the creation of a fully
functional embedded operating system, from its source code, in order to develop a
deeper understanding of each component and how they work together. The text
describes in detail the procedure for building the bootloader, kernel, filesystem, shared
libraries, start-up scripts, configuration files and system utilities, to produce a
GNU/Linux operating system. This fully updated second edition also includes new
material on virtual machine technologies such as VirtualBox, Vagrant and the Linux
container system Docker. Topics and features: presents an overview of the GNU/Linux
system, introducing the components of the system, and covering aspects of process
management, input/output and environment; discusses containers and the underlying
kernel technology upon which they are based; provides a detailed examination of the
GNU/Linux filesystem; explains how to build an embedded system under a virtual
machine, and how to build an embedded system to run natively on an actual
processor;introduces the concept of the compiler toolchain, and reviews the platforms
BeagleBone and Raspberry Pi; describes how to build firmware images for devices
running the Openwrt operating system. The hands-on nature and clearly structured

approach of this textbook will appeal strongly to practically minded undergraduate and
Page 1/39



graduate level students, as well as to industry professionals involved in this area.
Based upon the authors' experience in designing and deploying an embedded Linux
system with a variety of applications, Embedded Linux System Design and
Development contains a full embedded Linux system development roadmap for
systems architects and software programmers. Explaining the issues that arise out of
the use of Linux in embedded systems, the book facilitates movement to embedded
Linux from traditional real-time operating systems, and describes the system design
model containing embedded Linux. This book delivers practical solutions for writing,
debugging, and profiling applications and drivers in embedded Linux, and for
understanding Linux BSP architecture. It enables you to understand: various drivers
such as serial, 12C and USB gadgets; uClinux architecture and its programming model;
and the embedded Linux graphics subsystem. The text also promotes learning of
methods to reduce system boot time, optimize memory and storage, and find memory
leaks and corruption in applications. This volume benefits IT managers in planning to
choose an embedded Linux distribution and in creating a roadmap for OS transition. It
also describes the application of the Linux licensing model in commercial products.
The open source nature of Linux has always intrigued embedded engineers, and the
latest kernel releases have provided new features enabling more robust functionality for
embedded applications. Enhanced real-time performance, easier porting to new
architectures, support for microcontrollers and an improved I/O system give embedded
Page 2/39



engineers even more reasons to love Linux! However, the rapid evolution of the Linux
world can result in an eternal search for new information sources that will help
embedded programmers to keep up! This completely updated second edition of noted
author Doug Abbott’s respected introduction to embedded Linux brings readers up-to-
speed on all the latest developments. This practical, hands-on guide covers the many
issues of special concern to Linux users in the embedded space, taking into account
their specific needs and constraints. You'll find updated information on: « The GNU
toolchain ¢ Configuring and building the kernel « BlueCat Linux « Debugging on the
target »« Kernel Modules * Devices Drivers « Embedded Networking « Real-time
programming tips and techniques « The RTAI environment « And much more The
accompanying CD-ROM contains all the source code from the book’s examples,
helpful software and other resources to help you get up to speed quickly. This is still the
reference you’ll reach for again and again! * 100+ pages of new material adds depth
and breadth to the 2003 embedded bestseller. * Covers new Linux kernel 2.6 and the
recent major OS release, Fedora. * Gives the engineer a guide to working with popular
and cost-efficient open-source code.
Provides information on writing a driver in Linux, covering such topics as character
devices, network interfaces, driver debugging, concurrency, and interrupts.
Go is rapidly becoming the preferred language for building web services. While there
are plenty of tutorials available that teach Go's syntax to developers with experience in
Page 3/39



other programming languages, tutorials aren't enough. They don't teach Go's idioms, so
developers end up recreating patterns that don't make sense in a Go context. This
practical guide provides the essential background you need to write clear and idiomatic
Go. No matter your level of experience, you'll learn how to think like a Go developer.
Author Jon Bodner introduces the design patterns experienced Go developers have
adopted and explores the rationale for using them. You'll also get a preview of Go's
upcoming generics support and how it fits into the language. Learn how to write
idiomatic code in Go and design a Go project Understand the reasons for the design
decisions in Go Set up a Go development environment for a solo developer or team
Learn how and when to use reflection, unsafe, and cgo Discover how Go's features
allow the language to run efficiently Know which Go features you should use sparingly
or not at all
Harness the power of Linux to create versatile and robust embedded solutions Key
Features: Learn how to develop and configure robust embedded Linux devices Explore
the new features of Linux 5.4 and the Yocto Project 3.1 (Dunfell) Discover different
ways to debug and profile your code in both user space and the Linux kernel Book
Description: Embedded Linux runs many of the devices we use every day. From smart
TVs and Wi-Fi routers to test equipment and industrial controllers, all of them have
Linux at their heart. The Linux OS is one of the foundational technologies comprising
the core of the Internet of Things (loT). This book starts by breaking down the

Page 4/39



fundamental elements that underpin all embedded Linux projects: the toolchain, the
bootloader, the kernel, and the root filesystem. After that, you will learn how to create
each of these elements from scratch and automate the process using Buildroot and the
Yocto Project. As you progress, the book explains how to implement an effective
storage strategy for flash memory chips and install updates to a device remotely once
it's deployed. You'll also learn about the key aspects of writing code for embedded
Linux, such as how to access hardware from apps, the implications of writing multi-
threaded code, and techniques to manage memory in an efficient way. The final
chapters demonstrate how to debug your code, whether it resides in apps or in the
Linux kernel itself. You'll also cover the different tracers and profilers that are available
for Linux so that you can quickly pinpoint any performance bottlenecks in your system.
By the end of this Linux book, you'll be able to create efficient and secure embedded
devices using Linux. What You Will Learn: Use Buildroot and the Yocto Project to
create embedded Linux systems Troubleshoot BitBake build failures and streamline
your Yocto development workflow Update IoT devices securely in the field using
Mender or balena Prototype peripheral additions by reading schematics, modifying
device trees, soldering breakout boards, and probing pins with a logic analyzer Interact
with hardware without having to write kernel device drivers Divide your system up into
services supervised by BusyBox runit Debug devices remotely using GDB and measure
the performance of systems using tools such as perf, ftrace, eBPF, and Callgrind Who
Page 5/39



this book is for: If you're a systems software engineer or system administrator who
wants to learn Linux implementation on embedded devices, then this book is for you.
Embedded systems engineers accustomed to programming for low-power
microcontrollers can use this book to help make the leap to high-speed systems on
chips that can run Linux. Anyone responsible for developing new hardware that needs
to run Linux will also find this book useful. Basic working knowledge of the POSIX
standard, C programming, and shell scripting is assumed.
Harness the power of Linux to create versatile and robust embedded solutions Key
Features Learn how to develop and configure robust embedded Linux devices Explore
the new features of Linux 5.4 and the Yocto Project 3.1 (Dunfell) Discover different
ways to debug and profile your code in both user space and the Linux kernel Book
Description Embedded Linux runs many of the devices we use every day. From smart
TVs and Wi-Fi routers to test equipment and industrial controllers, all of them have
Linux at their heart. The Linux OS is one of the foundational technologies comprising
the core of the Internet of Things (loT). This book starts by breaking down the
fundamental elements that underpin all embedded Linux projects: the toolchain, the
bootloader, the kernel, and the root filesystem. After that, you will learn how to create
each of these elements from scratch and automate the process using Buildroot and the
Yocto Project. As you progress, the book explains how to implement an effective
storage strategy for flash memory chips and install updates to a device remotely once
Page 6/39



it's deployed. You'll also learn about the key aspects of writing code for embedded
Linux, such as how to access hardware from apps, the implications of writing multi-
threaded code, and techniques to manage memory in an efficient way. The final
chapters demonstrate how to debug your code, whether it resides in apps or in the
Linux kernel itself. You'll also cover the different tracers and profilers that are available
for Linux so that you can quickly pinpoint any performance bottlenecks in your system.
By the end of this Linux book, you'll be able to create efficient and secure embedded
devices using Linux. What you will learn Use Buildroot and the Yocto Project to create
embedded Linux systems Troubleshoot BitBake build failures and streamline your
Yocto development workflow Update l1oT devices securely in the field using Mender or
balena Prototype peripheral additions by reading schematics, modifying device trees,
soldering breakout boards, and probing pins with a logic analyzer Interact with
hardware without having to write kernel device drivers Divide your system up into
services supervised by BusyBox runit Debug devices remotely using GDB and measure
the performance of systems using tools such as perf, ftrace, eBPF, and Callgrind Who
this book is for If you're a systems software engineer or system administrator who
wants to learn Linux implementation on embedded devices, then this book is for you.
Embedded systems engineers accustomed to programming for low-power
microcontrollers can use this book to help make the leap to high-speed systems on
chips that can run Linux. Anyone responsible for developing new hardware that needs
Page 7/39



to run Linux will also find this book useful. Basic working knowledge of the POSIX
standard, C programming, and shell scripting is assumed.
Up-to-the-Minute, Complete Guidance for Developing Embedded Solutions with Linux
Linux has emerged as today's #1 operating system for embedded products.
Christopher Hallinan's Embedded Linux Primer has proven itself as the definitive real-
world guide to building efficient, high-value, embedded systems with Linux. Now,
Hallinan has thoroughly updated this highly praised book for the newest Linux kernels,
capabilities, tools, and hardware support, including advanced multicore processors.
Drawing on more than a decade of embedded Linux experience, Hallinan helps you
rapidly climb the learning curve, whether you're moving from legacy environments or
you're new to embedded programming. Hallinan addresses today's most important
development challenges and demonstrates how to solve the problems you're most
likely to encounter. You'll learn how to build a modern, efficient embedded Linux
development environment, and then utilize it as productively as possible. Hallinan offers
up-to-date guidance on everything from kernel configuration and initialization to
bootloaders, device drivers to file systems, and BusyBox utilities to real-time
configuration and system analysis. This edition adds entirely new chapters on UDEV,
USB, and open source build systems. Tour the typical embedded system and
development environment and understand its concepts and components. Understand
the Linux kernel and userspace initialization processes. Preview bootloaders, with

Page 8/39



specific emphasis on U-Boot. Configure the Memory Technology Devices (MTD)
subsystem to interface with flash (and other) memory devices. Make the most of
BusyBox and latest open source development tools. Learn from expanded and updated
coverage of kernel debugging. Build and analyze real-time systems with Linux. Learn to
configure device files and driver loading with UDEV. Walk through detailed coverage of
the USB subsystem. Introduces the latest open source embedded Linux build systems.
Reference appendices include U-Boot and BusyBox commands.

Master the techniques needed to build great, efficient embedded devices on
LinuxAbout This Book* Discover how to build and configure reliable embedded
Linux devices* This book has been updated to include Linux 4.9 and Yocto
Project 2.2 (Morty)* This comprehensive guide covers the remote update of
devices in the field and power managementWho This Book Is Forlf you are an
engineer who wishes to understand and use Linux in embedded devices, this
book is for you. It is also for Linux developers and system programmers who are
familiar with embedded systems and want to learn and program the best in class
devices. It is appropriate for students studying embedded techniques, for
developers implementing embedded Linux devices, and engineers supporting
existing Linux devices.What You Will Learn* Evaluate the Board Support
Packages offered by most manufacturers of a system on chip or embedded

Page 9/39



module* Use Buildroot and the Yocto Project to create embedded Linux systems
quickly and efficiently* Update IoT devices in the field without compromising
security* Reduce the power budget of devices to make batteries last longer*
Interact with the hardware without having to write kernel device drivers* Debug
devices remotely using GDB, and see how to measure the performance of the
systems using powerful tools such as perk, ftrace, and valgrind* Find out how to
configure Linux as a real-time operating systemin DetaillEmbedded Linux runs
many of the devices we use every day, from smart TVs to WiFi routers, test
equipment to industrial controllers - all of them have Linux at their heart. Linux is
a core technology in the implementation of the inter-connected world of the
Internet of Things.The comprehensive guide shows you the technologies and
techniques required to build Linux into embedded systems. You will begin by
learning about the fundamental elements that underpin all embedded Linux
projects: the toolchain, the bootloader, the kernel, and the root filesystem. You'll
see how to create each of these elements from scratch, and how to automate the
process using Buildroot and the Yocto Project.Moving on, you'll find out how to
implement an effective storage strategy for flash memory chips, and how to
install updates to the device remotely once it is deployed. You'll also get to know

the key aspects of writing code for embggigded Linux, such as how to access
Page 1



hardware from applications, the implications of writing multi-threaded code, and
techniques to manage memory in an efficient way. The final chapters show you
how to debug your code, both in applications and in the Linux kernel, and how to
profile the system so that you can look out for performance bottlenecks.By the
end of the book, you will have a complete overview of the steps required to
create a successful embedded Linux system.Style and approachThis book is an
easy-to-follow and pragmatic guide with in-depth analysis of the implementation
of embedded devices. It follows the life cycle of a project from inception through
to completion, at each stage giving both the theory that underlies the topic and
practical step-by-step walkthroughs of an example implementation.

A guide to using Linux on embedded platforms for interfacing to the real world.
"Embedded Linux" is one of the first books available that teaches readers
development and implementation of interfacing applications on an Embedded
Linux platform.

Learn to develop customized device drivers for your embedded Linux system
About This Book Learn to develop customized Linux device drivers Learn the
core concepts of device drivers such as memory management, kernel caching,
advanced IRQ management, and so on. Practical experience on the embedded

side of Linux Who This Book Is For This/gook will help anyone who wants to get
Page 11



started with developing their own Linux device drivers for embedded systems.
Embedded Linux users will benefit highly from this book. This book covers all
about device driver development, from char drivers to network device drivers to
memory management. What You Will Learn Use kernel facilities to develop
powerful drivers Develop drivers for widely used I2C and SPI devices and use
the regmap API Write and support devicetree from within your drivers Program
advanced drivers for network and frame buffer devices Delve into the Linux
irgdomain API and write interrupt controller drivers Enhance your skills with
regulator and PWM frameworks Develop measurement system drivers with 11O
framework Get the best from memory management and the DMA subsystem
Access and manage GPIO subsystems and develop GPIO controller drivers In
Detail Linux kernel is a complex, portable, modular and widely used piece of
software, running on around 80% of servers and embedded systems in more
than half of devices throughout the World. Device drivers play a critical role in
how well a Linux system performs. As Linux has turned out to be one of the most
popular operating systems used, the interest in developing proprietary device
drivers is also increasing steadily. This book will initially help you understand the
basics of drivers as well as prepare for the long journey through the Linux Kernel.

This book then covers drivers development based on various Linux subsystems
Page 12/39



such as memory management, PWM, RTC, IO, IRQ management, and so on.
The book also offers a practical approach on direct memory access and network
device drivers. By the end of this book, you will be comfortable with the concept
of device driver development and will be in a position to write any device driver
from scratch using the latest kernel version (v4.13 at the time of writing this
book). Style and approach A set of engaging examples to develop Linux device
drivers

Interested in developing embedded systems? Since they don't tolerate
inefficiency, these systems require a disciplined approach to programming. This
easy-to-read guide helps you cultivate a host of good development practices,
based on classic software design patterns and new patterns unique to embedded
programming. Learn how to build system architecture for processors, not
operating systems, and discover specific techniques for dealing with hardware
difficulties and manufacturing requirements. Written by an expert who'’s created
embedded systems ranging from urban surveillance and DNA scanners to
children’s toys, this book is ideal for intermediate and experienced programmers,
no matter what platform you use. Optimize your system to reduce cost and
increase performance Develop an architecture that makes your software robust

in resource-constrained environments Explore sensors, motors, and other I/O
Page 13/39



devices Do more with less: reduce RAM consumption, code space, processor
cycles, and power consumption Learn how to update embedded code directly in
the processor Discover how to implement complex mathematics on small
processors Understand what interviewers look for when you apply for an
embedded systems job "Making Embedded Systems is the book for a C
programmer who wants to enter the fun (and lucrative) world of embedded
systems. It's very well written—entertaining, even—and filled with clear
illustrations." —Jack Ganssle, author and embedded system expert.

LINUX DRIVER DEVELOPMENT FOR EMBEDDED PROCESSORS - SECOND
EDITION - The flexibility of Linux embedded, the availability of powerful, energy
efficient processors designed for embedded computing and the low cost of new
processors are encouraging many industrial companies to come up with new
developments based on embedded processors. Current engineers have in their
hands powerful tools for developing applications previously unimagined, but they
need to understand the countless features that Linux offers today. This book will
teach you how to develop device drivers for Device Tree Linux embedded
systems. You will learn how to write different types of Linux drivers, as well as the
appropriate APIs (Application Program Interfaces) and methods to interface with

kernel and user spaces. This is a book is meant to be practical, but also provides
Page 14/39



an important theoretical base. More than twenty drivers are written and ported to
three different processors. You can choose between NXP i.MX7D, Microchip
SAMAS5D2 and Broadcom BCM2837 processors to develop and test the drivers,
whose implementation is described in detail in the practical lab sections of the
book. Before you start reading, | encourage you to acquire any of these
processor boards whenever you have access to some GPIOs, and at least one
SPI and 12C controllers. The hardware configurations of the different evaluation
boards used to develop the drivers are explained in detail throughout this book;
one of the boards used to implement the drivers is the famous Raspberry Pl 3
Model B board. You will learn how to develop drivers, from the simplest ones that
do not interact with any external hardware, to drivers that manage different kind
of devices: accelerometers, DACs, ADCs, RGB LEDs, Multi-Display LED
controllers, I/O expanders, and Buttons. You will also develop DMA drivers,
drivers that manage interrupts, and drivers that write/read on the internal
registers of the processor to control external devices. To easy the development
of some of these drivers, you will use different types of Frameworks:
Miscellaneous framework, LED framework, UIO framework, Input framework and
the 110 industrial one. This second edition has been updated to the v4.9 LTS

kernel. Recently, all the drivers have be%rg ported to the new Microchip
Page 15



SAMAS5D27-SOM1 (SAMA5SD27 System On Module) using kernel 4.14 LTS and
included in the GitHub repository of this book; these drivers have been tested in
the ATSAMAS5D27-SOM1-EK1 evaluation platform; the
ATSAMAS5D27-SOM1-EK1 practice lab settings are not described throughout the
text of this book, but in a practice labs user guide that can be downloaded from
the book ?s GitHub.

This book is intended to provide a senior undergraduate or graduate student in
electrical engineering or computer science with a balance of fundamental theory,
review of industry practice, and hands-on experience to prepare for a career in
the real-time embedded system industries. It is also intended to provide the
practicing engineer with the necessary background to apply real-time theory to
the design of embedded components and systems. Typical industries include
aerospace, medical diagnostic and therapeutic systems, telecommunications,
automotive, robotics, industrial process control, media systems, computer
gaming, and electronic entertainment, as well as multimedia applications for
general-purpose computing. This updated edition adds three new chapters
focused on key technology advancements in embedded systems and with wider
coverage of real-time architectures. The overall focus remains the RTOS (Real-
Time Operating System), but use of Linux for soft real-time, hybrid FPGA (Field

Page 16/39



Programmable Gate Array) architectures and advancements in multi-core system-
on-chip (SoC), as well as software strategies for asymmetric and symmetric
multiprocessing (AMP and SMP) relevant to real-time embedded systems, have
been added. Companion files are provided with numerous project videos,
resources, applications, and figures from the book. Instructors’ resources are
available upon adoption. FEATURES: * Provides a comprehensive, up to date,
and accessible presentation of embedded systems without sacrificing theoretical
foundations ¢ Features the RTOS (Real-Time Operating System), but use of
Linux for soft real-time, hybrid FPGA architectures and advancements in multi-
core system-on-chip is included ¢ Discusses an overview of RTOS
advancements, including AMP and SMP configurations, with a discussion of
future directions for RTOS use in multi-core architectures, such as SoC
Detailed applications coverage including robotics, computer vision, and
continuous media ¢ Includes a companion disc (4GB) with numerous videos,
resources, projects, examples, and figures from the book * Provides several
Instructors’ resources, including lecture notes, Microsoft PP slides, etc.

This is the eBook of the printed book and may not include any media, website
access codes, or print supplements that may come packaged with the bound

book. Beginning computing students oft%rg finish the introduction to programming
Page 17



course without having had exposure to various system tools, without knowing
how to optimize program performance and without understanding how programs
interact with the larger computer system. Adam Hoover's System Programming
with C and Unix introduces students to commonly used system tools (libraries,
debuggers, system calls, shells and scripting languages) and then explains how
to utilize these tools to optimize program development. The text also examines
lower level data types with an emphasis on memory and understanding how and
why different data types are used.

This book offers readers an idea of what embedded Linux software and hardware
architecture looks like, cross-compiling, and also presents information about the
bootloader and how it can be built for a specific board. This book will go through
Linux kernel features and source code, present information on how to build a
kernel source, modules, and the Linux root filesystem. You'll be given an
overview of the available Yocto Project components, how to set up Yocto Project
Eclipse IDE, and how to use tools such as Wic and Swabber that are still under
development. It will present the meta-realtime layer and the newly created meta-
cgl layer, its purpose, and how it can add value to poky.

Master the art of developing customized device drivers for your embedded Linux
systems Key Features Stay up to date with the Linux PCI, ASoC, and V4L2

Page 18/39



subsystems and write device drivers for them Get to grips with the Linux kernel
power management infrastructure Adopt a practical approach to customizing your
Linux environment using best practices Book Description Linux is one of the
fastest-growing operating systems around the world, and in the last few years,
the Linux kernel has evolved significantly to support a wide variety of embedded
devices with its improved subsystems and a range of new features. With this
book, you'll find out how you can enhance your skills to write custom device
drivers for your Linux operating system. Mastering Linux Device Driver
Development provides complete coverage of kernel topics, including video and
audio frameworks, that usually go unaddressed. You'll work with some of the
most complex and impactful Linux kernel frameworks, such as PCI, ALSA for
SoC, and Video4Linux2, and discover expert tips and best practices along the
way. In addition to this, you'll understand how to make the most of frameworks
such as NVMEM and Watchdog. Once you've got to grips with Linux kernel
helpers, you'll advance to working with special device types such as Multi-
Function Devices (MFD) followed by video and audio device drivers. By the end
of this book, you'll be able to write feature-rich device drivers and integrate them
with some of the most complex Linux kernel frameworks, including V4L2 and
ALSA for SoC. What you will learn Explore and adopt Linux kernel helpers for

Page 19/39



locking, work deferral, and interrupt management Understand the Regmap
subsystem to manage memory accesses and work with the IRQ subsystem Get
to grips with the PCI subsystem and write reliable drivers for PCI devices Write
full multimedia device drivers using ALSA SoC and the V4L2 framework Build
power-aware device drivers using the kernel power management framework Find
out how to get the most out of miscellaneous kernel subsystems such as
NVMEM and Watchdog Who this book is for This book is for embedded
developers, Linux system engineers, and system programmers who want to
explore Linux kernel frameworks and subsystems. C programming skills and a
basic understanding of driver development are necessary to get started with this
book.

Expand Raspberry Pi capabilities with fundamental engineering principles
Exploring Raspberry Pi is the innovators guide to bringing Raspberry Pi to life.
This book favors engineering principles over a ‘recipe' approach to give you the
skills you need to design and build your own projects. You'll understand the
fundamental principles in a way that transfers to any type of electronics,
electronic modules, or external peripherals, using a "learning by doing" approach
that caters to both beginners and experts. The book begins with basic Linux and

programming skills, and helps you stoczlé/;gour inventory with common parts and
Page



supplies. Next, you'll learn how to make parts work together to achieve the goals
of your project, no matter what type of components you use. The companion
website provides a full repository that structures all of the code and scripts, along
with links to video tutorials and supplementary content that takes you deeper into
your project. The Raspberry Pi's most famous feature is its adaptability. It can be
used for thousands of electronic applications, and using the Linux OS expands
the functionality even more. This book helps you get the most from your
Raspberry Pi, but it also gives you the fundamental engineering skills you need to
incorporate any electronics into any project. Develop the Linux and programming
skills you need to build basic applications Build your inventory of parts so you can
always "make it work" Understand interfacing, controlling, and communicating
with almost any component Explore advanced applications with video, audio, real-
world interactions, and more Be free to adapt and create with Exploring
Raspberry Pi.

Linux® is being adopted by an increasing number of embedded systems
developers, who have been won over by its sophisticated scheduling and
networking, its cost-free license, its open development model, and the support
offered by rich and powerful programming tools. While there is a great deal of

hype surrounding the use of Linux in erfp&edded systems, there is not a lot of
Page 21



practical information. Building Embedded Linux Systems is the first in-depth, hard-
core guide to putting together an embedded system based on the Linux kernel.
This indispensable book features arcane and previously undocumented
procedures for: Building your own GNU development toolchain Using an efficient
embedded development framework Selecting, configuring, building, and installing
a target-specific kernel Creating a complete target root filesystem Setting up,
manipulating, and using solid-state storage devices Installing and configuring a
bootloader for the target Cross-compiling a slew of utilities and packages
Debugging your embedded system using a plethora of tools and techniques
Details are provided for various target architectures and hardware configurations,
including a thorough review of Linux's support for embedded hardware. All
explanations rely on the use of open source and free software packages. By
presenting how to build the operating system components from pristine sources
and how to find more documentation or help, this book greatly simplifies the task
of keeping complete control over one's embedded operating system, whether it
be for technical or sound financial reasons.Author Karim Yaghmour, a well-
known designer and speaker who is responsible for the Linux Trace Toolkit,
starts by discussing the strengths and weaknesses of Linux as an embedded

operating system. Licensing issues are i/ncluded, followed by a discussion of the
Page 22/39



basics of building embedded Linux systems. The configuration, setup, and use of
over forty different open source and free software packages commonly used in
embedded Linux systems are also covered. uClibc, BusyBox, U-Boot, OpenSSH,
thttpd, tftp, strace, and gdb are among the packages discussed.

Linux for Embedded and Real-Time Applications, Fourth Edition, provides a
practical introduction to the basics, covering the latest developments in this
rapidly evolving technology. Ideal for those new to the use of Linux in an
embedded environment, the book takes a hands-on approach that covers key
concepts of building applications in a cross-development environment. Hands-on
exercises focus on the popular open source BeagleBone Black board. New
content includes graphical programming with QT as well as expanded and
updated material on projects such as Eclipse, BusyBox — configuring and
building, the U-Boot bootloader — what it is, how it works, configuring and
building, and new coverage of the Root file system and the latest updates on the
Linux kernel.. Provides a hands-on introduction for engineers and software
developers who need to get up to speed quickly on embedded Linux, its
operation and capabilities Covers the popular open source target boards, the
BeagleBone and BeagleBone Black Includes new and updated material that

focuses on BusyBox, U-Boot bootloadezg/gnd graphical programming with QT
Page



As the embedded world expands, developers must have a strong grasp of many
complex topics in order to make faster, more efficient and more powerful
microprocessors to meet the public’s growing demand. Embedded Software:

The Works covers all the key subjects embedded engineers need to understand
in order to succeed, including Design and Development, Programming,
Languages including C/C++, and UML, Real Time Operating Systems
Considerations, Networking, and much more. New material on Linux, Android,
and multi-core gives engineers the up-to-date practical know-how they need in
order to succeed. Colin Walls draws upon his experience and insights from
working in the industry, and covers the complete cycle of embedded software
development: its design, development, management, debugging procedures,
licensing, and reuse. For those new to the field, or for experienced engineers
looking to expand their skills, Walls provides the reader with detailed tips and
techniques, and rigorous explanations of technologies. Key features include: New
chapters on Linux, Android, and multi-core - the cutting edge of embedded
software development! Introductory roadmap guides readers through the book,
providing a route through the separate chapters and showing how they are linked
About the Author Colin Walls has over twenty-five years experience in the

electronics industry, largely dedicated tzp/gmbedded software. A frequent
Page 24



presenter at conferences and seminars and author of numerous technical articles
and two books on embedded software, he is a member of the marketing team of
the Mentor Graphics Embedded Software Division. He writes a regular blog on
the Mentor website (blogs.mentor.com/colinwalls). New chapters on Linux,
Android, and multi-core - the cutting edge of embedded software development!
Introductory roadmap guides readers through the book, providing a route through
the separate chapters and showing how they are linked

This book integrates new ideas and topics from real time systems, embedded
systems, and software engineering to give a complete picture of the whole
process of developing software for real-time embedded applications. You will not
only gain a thorough understanding of concepts related to microprocessors,
interrupts, and system boot process, appreciating the importance of real-time
modeling and scheduling, but you will also learn software engineering practices
such as model documentation, model analysis, design patterns, and standard
conformance. This book is split into four parts to help you learn the key concept
of embedded systems; Part one introduces the development process, and
includes two chapters on microprocessors and interrupts---fundamental topics for
software engineers; Part two is dedicated to modeling techniques for real-time

systems; Part three looks at the designzc/)sfgsoftware architectures and Part four
Page 25



covers software implementations, with a focus on POSIX-compliant operating
systems. With this book you will learn: The pros and cons of different
architectures for embedded systems POSIX real-time extensions, and how to
develop POSIX-compliant real time applications How to use real-time UML to
document system designs with timing constraints The challenges and concepts
related to cross-development Multitasking design and inter-task communication
techniques (shared memory objects, message queues, pipes, signals) How to
use kernel objects (e.g. Semaphores, Mutex, Condition variables) to address
resource sharing issues in RTOS applications The philosophy underpinning the
notion of "resource manager" and how to implement a virtual file system using a
resource manager The key principles of real-time scheduling and several key
algorithms Coverage of the latest UML standard (UML 2.4) Over 20 design
patterns which represent the best practices for reuse in a wide range of real-time
embedded systems Example codes which have been tested in QNX---a real-time
operating system widely adopted in industry

From the Foreword: "...the presentation of real-time scheduling is probably the
best in terms of clarity | have ever read in the professional literature. Easy to
understand, which is important for busy professionals keen to acquire (or refresh)

new knowledge without being bogged ggsyvn in a convoluted narrative and an
Page 9



excessive detail overload. The authors managed to largely avoid theoretical-only
presentation of the subject, which frequently affects books on operating systems.
... an indispensable [resource] to gain a thorough understanding of the real-time
systems from the operating systems perspective, and to stay up to date with the
recent trends and actual developments of the open-source real-time operating
systems." —Richard Zurawski, ISA Group, San Francisco, California, USA Real-
time embedded systems are integral to the global technological and social space,
but references still rarely offer professionals the sufficient mix of theory and
practical examples required to meet intensive economic, safety, and other
demands on system development. Similarly, instructors have lacked a resource
to help students fully understand the field. The information was out there, though
often at the abstract level, fragmented and scattered throughout literature from
different engineering disciplines and computing sciences. Accounting for

readers’ varying practical needs and experience levels, Real Time Embedded
Systems: Open-Source Operating Systems Perspective offers a holistic overview
from the operating-systems perspective. It provides a long-awaited reference on
real-time operating systems and their almost boundless application potential in
the embedded system domain. Balancing the already abundant coverage of

operating systems with the largely ignozr%g real-time aspects, or "physicality," the
Page 27



authors analyze several realistic case studies to introduce vital theoretical
material. They also discuss popular open-source operating systems—Linux and
FreRTOS, in particular—to help embedded-system designers identify the benefits
and weaknesses in deciding whether or not to adopt more traditional, less
powerful, techniques for a project.

Embedded Linux provides the reader the information needed to design, develop,
and debug an embedded Linux appliance. It explores why Linux is a great choice

for an embedded application and what to look for when choosing hardware.
Embedded Linux PrimerA Practical Real-World ApproachPearson Education

Embedded Android is for Developers wanting to create embedded systems based on Android
and for those wanting to port Android to new hardware, or creating a custom development
environment. Hackers and moders will also find this an indispensible guide to how Android
works.

There's a great deal of excitement surrounding the use of Linux in embedded systems -- for
everything from cell phones to car ABS systems and water-filtration plants -- but not a lot of
practical information. Building Embedded Linux Systems offers an in-depth, hard-core guide to
putting together embedded systems based on Linux. Updated for the latest version of the Linux
kernel, this new edition gives you the basics of building embedded Linux systems, along with
the configuration, setup, and use of more than 40 different open source and free software
packages in common use. The book also looks at the strengths and weaknesses of using

Page 28/39



Linux in an embedded system, plus a discussion of licensing issues, and an introduction to real-
time, with a discussion of real-time options for Linux. This indispensable book features arcane
and previously undocumented procedures for: Building your own GNU development toolchain
Using an efficient embedded development framework Selecting, configuring, building, and
installing a target-specific kernel Creating a complete target root filesystem Setting up,
manipulating, and using solid-state storage devices Installing and configuring a bootloader for
the target Cross-compiling a slew of utilities and packages Debugging your embedded system
using a plethora of tools and techniques Using the uClibc, BusyBox, U-Boot, OpenSSH, thttpd,
tftp, strace, and gdb packages By presenting how to build the operating system components
from pristine sources and how to find more documentation or help, Building Embedded Linux
Systems greatly simplifies the task of keeping complete control over your embedded operating
system.

In-depth instruction and practical techniques for buildingwith the BeagleBone embedded Linux
platform Exploring BeagleBone is a hands-on guide to bringinggadgets, gizmos, and robots to
life using the popular BeagleBoneembedded Linux platform. Comprehensive content and deep
detailprovide more than just a BeagleBone instructionmanual—you’ll also learn the underlying
engineeringtechniques that will allow you to create your own projects. Thebook begins with a
foundational primer on essential skills, andthen gradually moves into communication, control,
and advancedapplications using C/C++, allowing you to learn at your own pace.In addition, the
book’s companion website featuresinstructional videos, source code, discussion forums, and
more, toensure that you have everything you need. The BeagleBone’s small size, high

performance, low cost,and extreme adaptability have made it a favorite developmentplatform,
Page 29/39



and the Linux software base allows for complex yetflexible functionality. The BeagleBone has
applications in smartbuildings, robot control, environmental sensing, to name a few;and,
expansion boards and peripherals dramatically increase thepossibilities. Exploring BeagleBone
provides areader-friendly guide to the device, including a crash coursein computer
engineering. While following step by step, you can: Get up to speed on embedded Linux,
electronics, andprogramming Master interfacing electronic circuits, buses and modules,
withpractical examples Explore the Internet-connected BeagleBone and the BeagleBonewith a
display Apply the BeagleBone to sensing applications, including videoand sound Explore the
BeagleBone’s Programmable Real-TimeControllers Hands-on learning helps ensure that your
new skills stay withyou, allowing you to design with electronics, modules, orperipherals even
beyond the BeagleBone. Insightful guidance andonline peer support help you transition from
beginner to expert asyou master the techniques presented in Exploring BeagleBone,the
practical handbook for the popular computing platform.

The Eclipse environment solves the problem of having to maintain your own Integrated
Development Environment (IDE), which is time consuming and costly. Embedded tools can
also be easily integrated into Eclipse. The C/C++CDT is ideal for the embedded community
with more than 70% of embedded developers using this language to write embedded code.
Eclipse simplifies embedded system development and then eases its integration into larger
platforms and frameworks. In this book, Doug Abbott examines Eclipse, an IDE, which can be
vital in saving money and time in the design and development of an embedded system. Eclipse
was created by IBM in 2001 and then became an open-source project in 2004. Since then it

has become the de-facto IDE for embedded developers. Virtually all of the major Linux vendors
Page 30/39



have adopted this platform, including MontVista, LynuxWorks, and Wind River. *Details the
Eclipse Integrated Development Environment (IDE) essential to streamlining your embedded
development process *Overview of the latest C/C++ Developer's Toolkit (CDT) *Includes case
studies of Eclipse use including Monta Vista, LynuxWorks, and Wind River

To thoroughly understand what makes Linux tick and why it's so efficient, you need to delve
deep into the heart of the operating system--into the Linux kernel itself. The kernel is Linux--in
the case of the Linux operating system, it's the only bit of software to which the term "Linux"
applies. The kernel handles all the requests or completed I/O operations and determines which
programs will share its processing time, and in what order. Responsible for the sophisticated
memory management of the whole system, the Linux kernel is the force behind the legendary
Linux efficiency. The new edition of Understanding the Linux Kernel takes you on a guided tour
through the most significant data structures, many algorithms, and programming tricks used in
the kernel. Probing beyond the superficial features, the authors offer valuable insights to
people who want to know how things really work inside their machine. Relevant segments of
code are dissected and discussed line by line. The book covers more than just the functioning
of the code, it explains the theoretical underpinnings for why Linux does things the way it does.
The new edition of the book has been updated to cover version 2.4 of the kernel, which is quite
different from version 2.2: the virtual memory system is entirely new, support for multiprocessor
systems is improved, and whole new classes of hardware devices have been added. The
authors explore each new feature in detail. Other topics in the book include: Memory
management including file buffering, process swapping, and Direct memory Access (DMA) The

Virtual Filesystem and the Second Extended Filesystem Process creation and scheduling
Page 31/39



Signals, interrupts, and the essential interfaces to device drivers Timing Synchronization in the
kernel Interprocess Communication (IPC) Program execution Understanding the Linux Kernel,
Second Edition will acquaint you with all the inner workings of Linux, but is more than just an
academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll
see how it meets the challenge of providing good system response during process scheduling,
file access, and memory management in a wide variety of environments. If knowledge is
power, then this book will help you make the most of your Linux system.

Master the techniques needed to build great, efficient embedded devices on Linux About This
Book Discover how to build and configure reliable embedded Linux devices This book has
been updated to include Linux 4.9 and Yocto Project 2.2 (Morty) This comprehensive guide
covers the remote update of devices in the field and power management Who This Book Is For
If you are an engineer who wishes to understand and use Linux in embedded devices, this
book is for you. It is also for Linux developers and system programmers who are familiar with
embedded systems and want to learn and program the best in class devices. It is appropriate
for students studying embedded techniques, for developers implementing embedded Linux
devices, and engineers supporting existing Linux devices. What You Will Learn Evaluate the
Board Support Packages offered by most manufacturers of a system on chip or embedded
module Use Buildroot and the Yocto Project to create embedded Linux systems quickly and
efficiently Update 10T devices in the field without compromising security Reduce the power
budget of devices to make batteries last longer Interact with the hardware without having to
write kernel device drivers Debug devices remotely using GDB, and see how to measure the

performance of the systems using powerful tools such as perk, ftrace, and valgrind Find out
Page 32/39



how to configure Linux as a real-time operating system In Detail Embedded Linux runs many of
the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial
controllers - all of them have Linux at their heart. Linux is a core technology in the
implementation of the inter-connected world of the Internet of Things. The comprehensive
guide shows you the technologies and techniques required to build Linux into embedded
systems. You will begin by learning about the fundamental elements that underpin all
embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem.
You'll see how to create each of these elements from scratch, and how to automate the
process using Buildroot and the Yocto Project. Moving on, you'll find out how to implement an
effective storage strategy for flash memory chips, and how to install updates to the device
remotely once it is deployed. You'll also get to know the key aspects of writing code for
embedded Linux, such as how to access hardware from applications, the implications of writing
multi-threaded code, and techniques to manage memory in an efficient way. The final chapters
show you how to debug your code, both in applications and in the Linux kernel, and how to
profile the system so that you can look out for performance bottlenecks. By the end of the
book, you will have a complete overview of the steps required to create a successful
embedded Linux system. Style and approach This book is an easy-to-follow and pragmatic
guide with in-depth analysis of the implementation of embedded devices. It follows the life
cycle of a project from inception through to completion, at each stage giving both the theory
that underlies the topic and practical step-by-step walkthroughs of an example implementation.
Up-to-the-Minute, Complete Guidance for Developing Embedded Solutions with Linux Linux

has emerged as today’s #1 operating system for embedded products. Christopher Hallinan’s
Page 33/39



Embedded Linux Primer has proven itself as the definitive real-world guide to building efficient,
high-value, embedded systems with Linux. Now, Hallinan has thoroughly updated this highly
praised book for the newest Linux kernels, capabilities, tools, and hardware support, including
advanced multicore processors. Drawing on more than a decade of embedded Linux
experience, Hallinan helps you rapidly climb the learning curve, whether you're moving from
legacy environments or you're new to embedded programming. Hallinan addresses today’s
most important development challenges and demonstrates how to solve the problems you're
most likely to encounter. You'll learn how to build a modern, efficient embedded Linux
development environment, and then utilize it as productively as possible. Hallinan offers up-to-
date guidance on everything from kernel configuration and initialization to bootloaders, device
drivers to file systems, and BusyBox utilities to real-time configuration and system analysis.
This edition adds entirely new chapters on UDEV, USB, and open source build systems. Tour
the typical embedded system and development environment and understand its concepts and
components. Understand the Linux kernel and userspace initialization processes. Preview
bootloaders, with specific emphasis on U-Boot. Configure the Memory Technology Devices
(MTD) subsystem to interface with flash (and other) memory devices. Make the most of
BusyBox and latest open source development tools. Learn from expanded and updated
coverage of kernel debugging. Build and analyze real-time systems with Linux. Learn to
configure device files and driver loading with UDEV. Walk through detailed coverage of the
USB subsystem. Introduces the latest open source embedded Linux build systems. Reference
appendices include U-Boot and BusyBox commands.

Authored by two of the leading authorities in the field, this guide offers readers the knowledge
Page 34/39



and skills needed to achieve proficiency with embedded software.

A practical tutorial guide which introduces you to the basics of Yocto Project, and also helps
you with its real hardware use to boost your Embedded Linux-based project. If you are an
embedded systems enthusiast and willing to learn about compelling features offered by the
Yocto Project, then this book is for you. With prior experience in the embedded Linux domain,
you can make the most of this book to efficiently create custom Linux-based systems.

Build Complete Embedded Linux Systems Quickly and Reliably Developers are increasingly
integrating Linux into their embedded systems: It supports virtually all hardware architectures
and many peripherals, scales well, offers full source code, and requires no royalties. The Yocto
Project makes it much easier to customize Linux for embedded systems. If you're a developer
with working knowledge of Linux, Embedded Linux Systems with the Yocto Project™ will help
you make the most of it. An indispensable companion to the official documentation, this guide
starts by offering a solid grounding in the embedded Linux landscape and the challenges of
creating custom distributions for embedded systems. You'll master the Yocto Project’s
toolbox hands-on, by working through the entire development lifecycle with a variety of real-life
examples that you can incorporate into your own projects. Author Rudolf Streif offers deep
insight into Yocto Project’s build system and engine, and addresses advanced topics ranging
from board support to compliance management. You'll learn how to Overcome key challenges
of creating custom embedded distributions Jumpstart and iterate OS stack builds with the
OpenEmbedded Build System Master build workflow, architecture, and the BitBake Build
Engine Quickly troubleshoot build problems Customize new distros with built-in blueprints or

from scratch Use BitBake recipes to create new software packages Build kernels, set
Page 35/39



configurations, and apply patches Support diverse CPU architectures and systems Create
Board Support Packages (BSP) for hardware-specific adaptations Provide Application
Development Toolkits (ADT) for round-trip development Remotely run and debug applications
on actual hardware targets Ensure open-source license compliance Scale team-based projects
with Toaster, Build History, Source Mirrors, and Autobuilder

Leverage the power of Linux to develop captivating and powerful embedded Linux projects
About This Book Explore the best practices for all embedded product development stages
Learn about the compelling features offered by the Yocto Project, such as customization,
virtualization, and many more Minimize project costs by using open source tools and programs
Who This Book Is For If you are a developer who wants to build embedded systems using
Linux, this book is for you. It is the ideal guide for you if you want to become proficient and
broaden your knowledge. A basic understanding of C programming and experience with
systems programming is needed. Experienced embedded Yocto developers will find new
insight into working methodologies and ARM specific development competence. What You Will
Learn Use the Yocto Project in the embedded Linux development process Get familiar with
and customize the bootloader for a board Discover more about real-time layer, security,
virtualization, CGL, and LSB See development workflows for the U-Boot and the Linux kernel,
including debugging and optimization Understand the open source licensing requirements and
how to comply with them when cohabiting with proprietary programs Optimize your production
systems by reducing the size of both the Linux kernel and root filesystems Understand device
trees and make changes to accommodate new hardware on your device Design and write

multi-threaded applications using POSIX threads Measure real-time latencies and tune the
Page 36/39



Linux kernel to minimize them In Detail Embedded Linux is a complete Linux distribution
employed to operate embedded devices such as smartphones, tablets, PDAs, set-top boxes,
and many more. An example of an embedded Linux distribution is Android, developed by
Google. This learning path starts with the module Learning Embedded Linux Using the Yocto
Project. It introduces embedded Linux software and hardware architecture and presents
information about the bootloader. You will go through Linux kernel features and source code
and get an overview of the Yocto Project components available. The next module Embedded
Linux Projects Using Yocto Project Cookbook takes you through the installation of a
professional embedded Yocto setup, then advises you on best practices. Finally, it explains
how to quickly get hands-on with the Freescale ARM ecosystem and community layer using
the affordable and open source Wandboard embedded board. Moving ahead, the final module
Mastering Embedded Linux Programming takes you through the product cycle and gives you
an in-depth description of the components and options that are available at each stage. You
will see how functions are split between processes and the usage of POSIX threads. By the
end of this learning path, your capabilities will be enhanced to create robust and versatile
embedded projects. This Learning Path combines some of the best that Packt has to offer in
one complete, curated package. It includes content from the following Packt products: Learning
Embedded Linux Using the Yocto Project by Alexandru Vaduva Embedded Linux Projects
Using Yocto Project Cookbook by Alex Gonzalez Mastering Embedded Linux Programming by
Chris Simmonds Style and approach This comprehensive, step-by-step, pragmatic guide
enables you to build custom versions of Linux for new embedded systems with examples that

are immediately applicable to your embedded developments. Practical examples provide an
Page 37/39



easy-to-follow way to learn Yocto project development using the best practices and working
methodologies. Coupled with hints and best practices, this will help you understand embedded
Linux better.

Embedded Systems: ARM Programming and Optimization combines an exploration of the
ARM architecture with an examination of the facilities offered by the Linux operating system to
explain how various features of program design can influence processor performance. It
demonstrates methods by which a programmer can optimize program code in a way that does
not impact its behavior but improves its performance. Several applications, including image
transformations, fractal generation, image convolution, and computer vision tasks, are used to
describe and demonstrate these methods. From this, the reader will gain insight into computer
architecture and application design, as well as gain practical knowledge in the area of
embedded software design for modern embedded systems. Covers three ARM instruction set
architectures, the ARMv6 and ARMv7-A, as well as three ARM cores, the ARM11 on the
Raspberry Pi, Cortex-A9 on the Xilinx Zynq 7020, and Cortex-A15 on the NVIDIA Tegra K1
Describes how to fully leverage the facilities offered by the Linux operating system, including
the Linux GCC compiler toolchain and debug tools, performance monitoring support, OpenMP
multicore runtime environment, video frame buffer, and video capture capabilities Designed to
accompany and work with most of the low cost Linux/ARM embedded development boards
currently available

Today, Linux is included with nearly every embedded platform. Embedded developers can take
a more modern route and spend more time tuning Linux and taking advantage of open source

code to build more robust, feature-rich applications. While Gene Sally does not neglect porting
Page 38/39



Linux to new hardware, modern embedded hardware is more sophisticated than ever: most
systems include the capabilities found on desktop systems. This book is written from the
perspective of a user employing technologies and techniques typically reserved for desktop
systems. Modern guide for developing embedded Linux systems Shows you how to work with
existing Linux embedded system, while still teaching how to port Linux Explains best practices
from somebody who has done it before

Copyright: 690b7bfb534834c57fc05cde655d85fe

Page 39/39


https://www.treca.org/
http://www.treca.org

