Introduction To Logic Synthesis Using Verilog Hdl Introduction to Logic Synthesis Using Verilog HDLMorgan & Claypool Publishers Until now, there was no single resource for actual digital system design. Using both basic and advanced concepts, Sequential Logic: Analysis and Synthesis offers a thorough exposition of the analysis and synthesis of both synchronous and asynchronous sequential machines. With 25 years of experience in designing computing equipment, the author stresses the practical design of state machines. He clearly delineates each step of the structured and rigorous design principles that can be applied to practical applications. The book begins by reviewing the analysis of combinatorial logic and Boolean algebra, and goes on to define sequential machines and discuss traditional and alternative methods for synthesizing synchronous sequential machines. The final chapters deal with asynchronous sequential machines and pulse-mode asynchronous sequential machines. Because this volume is technology-independent, these techniques can be used in a variety of fields, such as electrical and computer engineering as well as nanotechnology. By presenting each method in detail, expounding on several corresponding examples, and providing over 500 useful figures, Sequential Logic is an excellent tutorial on analysis and synthesis procedures. Making VHDL a simple and easy-to-use hardware description language Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies a design style that results in long design lifetimes, maximum design reuse and easy technology retargeting a new chapter on a large scale design example based on a digital filter from design objective and design process, to testing strategy and test benches a chapter on writing test benches, with everything needed to implement a test-based design strategy extensive coverage of data path design, including integer, fixed-point and floating-point arithmetic. logic circuits, shifters, tristate buses, RAMs, ROMs, state machines, and decoders Focused specifically on logic synthesis, this book is for professional hardware engineers using VHDL for logic synthesis, and digital systems designers new to VHDL but familiar with digital systems. It offers all the knowledge and tools needed to use VHDL for logic synthesis. Organised in themed chapters and with a comprehensive index, this complete reference will also benefit postgraduate students following courses on microelectronics or VLSI/ semiconductors and digital design. This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo? Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems. Pragmatic Logic presents the analysis and design of digital logic systems. The author begins with a brief study of binary and hexadecimal number systems and then looks at the basics of Boolean algebra. The study of logic circuits is divided into two parts, combinational logic, which has no memory, and sequential logic, which does. Numerous examples highlight the principles being presented. The text ends with an introduction to digital logic design using Verilog, a hardware description language. The chapter on Verilog can be studied along with the other chapters in the text. After the reader has completed combinational logic in Chapters 4 and 5, sections 9.1 and 9.2 would be appropriate. Similarly, the rest of Chapter 9 could be studied after completing sequential logic in Chapters 6 and 7. This short lecture book will be of use to students at any level of electrical or computer engineering and for practicing engineers or scientists in any field looking for a practical and applied introduction to digital logic. The author's "pragmatic" and applied style gives a unique and helpful "non-idealist, practical, opinionate" introduction to digital systems. This book provides a single-source reference to the state-of-the-art in logic synthesis. Readers will benefit from the authors' expert perspectives on new technologies and logic synthesis, new data structures, big data and logic synthesis, and convergent logic synthesis. The authors describe techniques that will enable readers to take advantage of recent advances in big data techniques and frameworks in order to have better logic synthesis algorithms. Logic Synthesis Using Synopsys, Second Edition, is for anyone who hates reading manuals but would still like to learn logic synthesis as practiced in the real world. This book should help the reader develop a better understanding of the logic synthesis design flow, optimization strategies using the Design Compiler, test synthesis using the Test Compiler, commonly used interface formats such as EDIF, SDF and PDEF, Links from the Design Compiler to Layout Tools, the FPGA synthesis process, design re-use in a synthesis-based design methodology and a conceptual introduction to behavioral synthesis. Examples in both VHDL and Verilog have been provided throughout the book. Logic Synthesis Using Synopsys, Second Edition covers several new and emerging areas in addition to improvements in the presentation and contents in chapters from the first edition. Logic Synthesis and Optimization presents up-to-date research information in a pedagogical form. The authors are recognized as the leading experts on the subject. The focus of the book is on logic minimization and includes such topics as two-level minimization, multi-level minimization, application of binary decision diagrams, delay optimization, asynchronous circuits, spectral method for logic design, field programmable gate array (FPGA) design, EXOR logic synthesis and technology mapping. Examples and illustrations are included so that each contribution can be read independently. Logic Synthesis and Optimization is an indispensable reference for academic researchers as well as professional CAD engineers. This book focuses on control units, which are a vital part of modern digital systems, and responsible for the efficiency of controlled systems. The model of a finite state machine (FSM) is often used to represent the behavior of a control unit. As a rule, control units have irregular structures that make it impossible to design their logic circuits using the standard library cells. Design methods depend strongly on such factors as the FSM used, specific features of the logic elements implemented in the FSM logic circuit, and the characteristics of the control algorithm to be interpreted. This book discusses Moore and Mealy FSMs implemented with FPGA chips, including look-up table elements (LUT) and embedded memory blocks (EMB). It is crucial to minimize the number of LUTs and EMBs in an FSM logic circuit, as well as to make the interconnections between the logic elements more regular, and various methods of structural decompositions can be used to solve this problem. These methods are reduced to the presentation of an FSM circuit as a composition of different logic blocks, the majority of which implement systems of intermediate logic functions different (and much simpler) than input memory functions and FSM output functions. The structural decomposition results in multilevel FSM circuits having fewer logic elements than equivalent single-level circuits. The book describes well-known methods of structural decomposition and proposes new ones, examining their impact on the final amount of hardware in an FSM circuit. It is of interest to students and postgraduates in the area of Computer Science, as well as experts involved in designing digital systems with complex control units. The proposed models and design methods open new possibilities for creating logic circuits of control units with an optimal amount of hardware and regular interconnections. Finite State Machine-Datapath Design, Optimization, and Implementation explores the design space of combined FSM/Datapath implementations. The lecture starts by examining performance issues in digital systems such as clock skew and its effect on setup and hold time constraints, and the use of pipelining for increasing system clock frequency. This is followed by definitions for latency and throughput, with associated resource tradeoffs explored in detail through the use of dataflow graphs and scheduling tables applied to examples taken from digital signal processing applications. Also, design issues relating to functionality, interfacing, and performance for different types of memories commonly found in ASICs and FPGAs such as FIFOs, single-ports, dual-ports, and register files are examined. Finally, design issues regarding cooperating Finite State Machine/Datapaths are explored. All design examples are presented in implementation-neutral Verilog code and block diagrams, with associated design files available as downloads for both Altera Quartus and Xilinx Virtex FPGA platforms. A working knowledge of Verilog, logic synthesis, and basic digital design techniques is required. This lecture is suitable as a companion to the synthesis lecture titled Introduction to Logic Synthesis using Verilog HDL. A unique guide to using both modeling and simulation in digital systems design Digital systems design requires rigorous modeling and simulation analysis that eliminates design risks and potential harm to users. Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL introduces the application of modeling and synthesis in the effective design of digital systems and explains applicable analytical and computational methods. Through stepby-step explanations and numerous examples, the author equips readers with the tools needed to model, synthesize, and simulate digital principles using Very High Speed Integrated Circuit Hardware Description Language (VHDL) programming. Extensively classroom-tested to ensure a fluid presentation, this book provides a comprehensive overview of the topic by integrating theoretical principles, discrete mathematical models, computer simulations, and basic methods of analysis. Topical coverage includes: Digital systems modeling and simulation Integrated logic Boolean algebra and logic Logic function optimization Number systems Combinational logic VHDL design concepts Sequential and synchronous sequential logic Each chapter begins with learning objectives that outline key concepts that follow, and all discussions conclude with problem sets that allow readers to test their comprehension of the presented material. Throughout the book, VHDL sample codes are used to illustrate circuit design, providing guidance not only on how to learn and master VHDL programming, but also how to model and simulate digital circuits. Introduction to Digital Systems is an excellent book for courses in modeling and simulation, operations research, engineering, and computer science at the upper-undergraduate and graduate levels. The book also serves as a valuable resource for researchers and practitioners in the fields of operations research, mathematical modeling, simulation, electrical engineering, and computer science. This book is a gentle but rigorous introduction to formal logic. It is intended primarily for use at the college level. However, it can also be used for advanced secondary school students, and it can be used at the start of graduate school for those who have not yet seen the material. The approach to teaching logic used here emerged from more than 20 years of teaching logic to students at Stanford University and from teaching logic to tens of thousands of others via online courses on the World Wide Web. The approach differs from that taken by other books in logic in two essential ways, one having to do with content, the other with form. Like many other books on logic, this one covers logical syntax and semantics and proof theory plus induction. However, unlike other books, this book begins with Herbrand semantics rather than the more traditional Tarskian semantics. This approach makes the material considerably easier for students to understand and leaves them with a deeper understanding of what logic is all about. The primary content difference concerns the semantics of the logic that is taught. In addition to this text, there are online exercises (with automated grading), online logic tools and applications, online videos of lectures, and an online forum for discussion. They are available at logic.stanford.edu/intrologic/. This book provides the most up-to-date coverage using the Synopsys program in the design of integrated circuits. The incorporation of "synthesis tools" is the most popular new method of designing integrated circuits for higher speeds covering smaller surface areas. Synopsys is the dominant computer-aided circuit design program in the world. All of the major circuit manufacturers and ASIC design firms use Synopsys. In addition, Synopsys is used in teaching and laboratories at over 600 universities. First practical guide to using synthesis with Synopsys Synopsys is the #1 design program for IC design Switching Theory for Logic Synthesis covers the basic topics of switching theory and logic synthesis in fourteen chapters. Chapters 1 through 5 provide the mathematical foundation. Chapters 6 through 8 include an introduction to sequential circuits, optimization of sequential machines and asynchronous sequential circuits. Chapters 9 through 14 are the main feature of the book. These chapters introduce and explain various topics that make up the subject of logic synthesis: multi-valued input two-valued output function, logic design for PLDs/FPGAs, EXOR-based design, and complexity theories of logic networks. An appendix providing a history of switching theory is included. The reference list consists of over four hundred entries. Switching Theory for Logic Synthesis is based on the author's lectures at Kyushu Institute of Technology as well as seminars for CAD engineers from various Japanese technology companies. Switching Theory for Logic Synthesis will be of interest to CAD professionals and students at the advanced level. It is also useful as a textbook, as each chapter contains examples, illustrations, and exercises. For those with a basic understanding of digital design, this book teaches the essential skills to design digital integrated circuits using Verilog and the relevant extensions of SystemVerilog. In addition to covering the syntax of Verilog and SystemVerilog, the author provides an appreciation of design challenges and solutions for producing working circuits. The book covers not only the syntax and limitations of HDL coding, but deals extensively with design problems such as partitioning and synchronization, helping you to produce designs that are not only logically correct, but will actually work when turned into physical circuits. Throughout the book, many small examples are used to validate concepts and demonstrate how to apply design skills. This book takes readers who have already learned the fundamentals of digital design to the point where they can produce working circuits using modern design methodologies. It clearly explains what is useful for circuit design and what parts of the languages are only software, providing a non-theoretical, practical guide to robust, reliable and optimized hardware design and development. Produce working hardware: Covers not only syntax, but also provides design know-how, addressing problems such as synchronization and partitioning to produce working solutions Usable examples: Numerous small examples throughout the book demonstrate concepts in an easy-to-grasp manner Essential knowledge: Covers the vital design topics of synchronization, essential for producing working silicon; asynchronous interfacing techniques; and design techniques for circuit optimization, including partitioning In this book, author William Eccles provides a simple, "pragmatic" approach to the study of digital logic. It covers the basic techniques leading to successful digital system designs that all undergraduate engineering students should know. Topics covered: * Boolean algebra* Combinational and sequential logic* Registers and counters* Design of finite state machines (FSM) This book describes the synthesis of logic functions using memories. It is useful to design field programmable gate arrays (FPGAs) that contain both small-scale memories, called look-up tables (LUTs), and medium-scale memories, called embedded memories. This is a valuable reference for both FPGA system designers and CAD tool developers, concerned with logic synthesis for FPGAs. Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis. Logic synthesis has become a fundamental component of the ASIC design flow, and Logic Synthesis Using Synopsys® has been written for all those who dislike reading manuals but who still like to learn logic synthesis as practised in the real world. The primary focus of the book is Synopsys Design Compiler®: the leading synthesis tool in the EDA marketplace. The book is specially organized to assist designers accustomed to schematic capture based design to develop the required expertise to effectively use the Compiler. Over 100 'classic scenarios' faced by designers using the Design Compiler have been captured and discussed, and solutions provided. The scenarios are based both on personal experiences and actual user queries. A general understanding of the problemsolving techniques provided will help the reader debug similar and more complicated problems. Furthermore, several examples and dc-shell scripts are provided. Specifically, Logic Synthesis Using Synopsys® will help the reader develop a better understanding of the synthesis design flow, optimization strategies using the Design Compiler, test insertion using the Test Compiler®, commonly used interface formats such as EDIF and SDF, and design re-use in a synthesis-based design methodology. Examples have been provided in both VHDL and Verilog. Audience: Written with CAD engineers in mind to enable them to formulate an effective synthesis-based ASIC design methodology. Will also assist design teams to better incorporate and effectively integrate synthesis with their existing in-house design methodology and CAD tools. The roots of the project which culminates with the writing of this book can be traced to the work on logic synthesis started in 1979 at the IBM Watson Research Center and at University of California, Berkeley. During the preliminary phases of these projects, the importance of logic minimization for the synthesis of area and performance effective circuits clearly emerged. In 1980, Richard Newton stirred our interest by pointing out new heuristic algorithms for two-level logic minimization and the potential for improving upon existing approaches. In the summer of 1981, the authors organized and participated in a seminar on logic manipulation at IBM Research. One of the goals of the seminar was to study the literature on logic minimization and to look at heuristic algorithms from a fundamental and comparative point of view. The fruits of this investigation were surprisingly abundant: it was apparent from an initial implementation of recursive logic minimiza tion (ESPRESSO-I) that, if we merged our new results into a twolevel minimization program, an important step forward in automatic logic synthesis could result. ESPRESSO-II was born and an APL implemen tation was created in the summer of 1982. The results of preliminary tests on a fairly large set of industrial examples were good enough to justify the publication of our algorithms. It is hoped that the strength and speed of our minimizer warrant its Italian name, which denotes both express delivery and a specially-brewed black coffee. This second edition focuses on the thought process of digital design and implementation in the context of VLSI and system design. It covers the Verilog 2001 and Verilog 2005 RTL design styles, constructs and the optimization at the RTL and synthesis level. The book also covers the logic synthesis, low power, multiple clock domain design concepts and design performance improvement techniques. The book includes 250 design examples/illustrations and 100 exercise questions. This volume can be used as a core or supplementary text in undergraduate courses on logic design and as a text for professional and vocational coursework. In addition, it will be a hands-on professional reference and a self-study aid for hobbyists. Introduction to Logic Synthesis Using Verilog HDL explains how to write accurate Verilog descriptions of digital systems that can be synthesized into digital system netlists with desirable characteristics. The book contains numerous Verilog examples that begin with simple combinational networks and progress to synchronous sequential logic systems. Common pitfalls in the development of synthesizable Verilog HDL are also discussed along with methods for avoiding them. The target audience is anyone with a basic understanding of digital logic principles who wishes to learn how to model digital systems in the Verilog HDL in a manner that also allows for automatic synthesis. A wide range of readers, from hobbyists and undergraduate students to seasoned professionals, will find this a compelling and approachable work. The book provides concise coverage of the material and includes many examples, enabling readers to quickly generate high-quality synthesizable Verilog models. Designing Asynchronous Circuits using NULL Convention Logic (NCL) begins with an introduction to asynchronous (clockless) logic in general, and then focuses on delay-insensitive asynchronous logic design using the NCL paradigm. The book details design of input-complete and observable dual-rail and quad-rail combinational circuits, and then discusses implementation of sequential circuits, which require datapath feedback. Next, throughput optimization techniques are presented, including pipelining, embedding registration, early completion, and NULL cycle reduction. Subsequently, low-power design techniques, such as wavefront steering and Multi-Threshold CMOS (MTCMOS) for NCL, are discussed. The book culminates with a comprehensive design example of an optimized Greatest Common Divisor circuit. Readers should have prior knowledge of basic logic design concepts, such as Boolean algebra and Karnaugh maps. After studying this book, readers should have a good understanding of the differences between asynchronous and synchronous circuits, and should be able to design arbitrary NCL circuits, optimized for area, throughput, and power. Table of Contents: Introduction to Asynchronous Logic / Overview of NULL Convention Logic (NCL) / Combinational NCL Circuit Design / Sequential NCL Circuit Design / NCL Throughput Optimization / Low-Power NCL Design / Comprehensive NCL Design Example Logic Synthesis and Verification Algorithms is a textbook designed for courses on VLSI Logic Synthesis and Verification, Design Automation, CAD and advanced level discrete mathematics. It also serves as a basic reference work in design automation for both professionals and students. Logic Synthesis and Verification Algorithms is about the theoretical underpinnings of VLSI (Very Large Scale Integrated Circuits). It combines and integrates modern developments in logic synthesis and formal verification with the more traditional matter of Switching and Finite Automata Theory. The book also provides background material on Boolean algebra and discrete mathematics. A unique feature of this text is the large collection of solved problems. Throughout the text the algorithms covered are the subject of one or more problems based on the use of available synthesis programs. This book is a gentle but rigorous introduction to Formal Logic. It is intended primarily for use at the college level. However, it can also be used for advanced secondary school students, and it can be used at the start of graduate school for those who have not yet seen the material. The approach to teaching logic used here emerged from more than 20 years of teaching logic to students at Stanford University and from teaching logic to tens of thousands of others via online courses on the World Wide Web. The approach differs from that taken by other books in logic in two essential ways, one having to do with content, the other with form. Like many other books on logic, this one covers logical syntax and semantics and proof theory plus induction. However, unlike other books, this book begins with Herbrand semantics rather than the more traditional Tarskian semantics. This approach makes the material considerably easier for students to understand and leaves them with a deeper understanding of what logic is all about. In addition to this text, there are online exercises (with automated grading), online logic tools and applications, online videos of lectures, and an online forum for discussion. They are available at logic.stanford.edu/intrologic/ Table of Contents: Introduction / Propositional Logic / Satisfiability / Propositional Proofs / Propositional Resolution / Relational Logic / Relational Logic Proofs / Resolution / Induction / Equality With an abundance of insightful examples, problems, and computer experiments, Introduction to Logic Design provides a balanced, easy-to-read treatment of the fundamental theory of logic functions and applications to the design of digital devices and systems. Requiring no prior knowledge of electrical circuits or electronics, it supplies the Logic Programming is a style of programming in which programs take the form of sets of sentences in the language of Symbolic Logic. Over the years, there has been growing interest in Logic Programming due to applications in deductive databases, automated worksheets, Enterprise Management (business rules), Computational Law, and General Game Playing. This book introduces Logic Programming theory, current technology, and popular applications. In this volume, we take an innovative, modeltheoretic approach to logic programming. We begin with the fundamental notion of datasets, i.e., sets of ground atoms. Given this fundamental notion, we introduce views, i.e., virtual relations; and we define classical logic programs as sets of view definitions, written using traditional Prolog-like notation but with semantics given in terms of datasets rather than implementation. We then introduce actions, i.e., additions and deletions of ground atoms; and we define dynamic logic programs as sets of action definitions. In addition to the printed book, there is an online version of the text with an interpreter and a compiler for the language used in the text and an integrated development environment for use in developing and deploying practical logic programs. "This is a book for the 21st century: presenting an elegant and innovative perspective on logic programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridging the gap between programming languages and knowledge representation languages; and it treats updates on an equal footing with datasets, leading to a sound and practical treatment of action and change." - Bob Kowalski, Professor Emeritus, Imperial College London "In a world where Deep Learning and Python are the talk of the day, this book is a remarkable development. It introduces the reader to the fundamentals of traditional Logic Programming and makes clear the benefits of using the technology to create runnable specifications for complex systems." - Son Cao Tran, Professor in Computer Science, New Mexico State University "Excellent introduction to the fundamentals of Logic Programming. The book is wellwritten and well-structured. Concepts are explained clearly and the gradually increasing complexity of exercises makes it so that one can understand easy notions quickly before moving on to more difficult ideas." - George Younger, student, Stanford This is the first volume in a new hardcover combined volume of Synthesis Lectures. This volume contains the following lectures: Finite State Machine Datapath Design, Optimization, and Implementation; Introduction to Logic Synthesis using Verilog HDL; High-Speed Digital System Design; Microcontrollers Fundamentals for Engineers and Scientists University Short turnaround has become critical in the design of electronic systems. Software-programmable components such as microprocessors and digital signal processors have been used extensively in such systems since they allow rapid design revisions. However, the inherent performance limitations of software-programmable systems mean that they are inadequate for high-performance designs. Designers thus turned to gate arrays as a solution. User-programmable gate arrays (field-programmable gate arrays, FPGAs) have recently emerged and are changing the way electronic systems are designed and implemented. The growing complexity of the logic circuits that can be packed onto an FPGA chip means that it has become important to have automatic synthesis tools that implement logic functions on these architectures. Logic Synthesis for Field-Programmable Gate Arrays describes logic synthesis for both look-up table (LUT) and multiplexor-based architectures, with a balanced presentation of existing techniques together with algorithms and the system developed by the authors. Audience: A useful reference for VLSI designers, developers of computer-aided design tools, and anyone involved in or with FPGAs. This book presents the hardware implementation of control algorithms represented by graph-schemes of algorithm. It includes new methods of logic synthesis and optimization for logic circuits of Mealy and Moore FSMs oriented on both ASIC and FPLD. This book brings to bear a body of logic synthesis techniques, in order to contribute to the analysis and control of Boolean Networks (BN) for modeling genetic diseases such as cancer. The authors provide several VLSI logic techniques to model the genetic disease behavior as a BN, with powerful implicit enumeration techniques. Coverage also includes techniques from VLSI testing to control a faulty BN, transforming its behavior to a healthy BN, potentially aiding in efforts to find the best candidates for treatment of genetic diseases. An Introduction to Logic Circuit Testing provides a detailed coverage of techniques for test generation and testable design of digital electronic circuits/systems. The material covered in the book should be sufficient for a course, or part of a course, in digital circuit testing for senior-level undergraduate and first-year graduate students in Electrical Engineering and Computer Science. The book will also be a valuable resource for engineers working in the industry. This book has four chapters. Chapter 1 deals with various types of faults that may occur in very large scale integration (VLSI)-based digital circuits. Chapter 2 introduces the major concepts of all test generation techniques such as redundancy, fault coverage, sensitization, and backtracking. Chapter 3 introduces the key concepts of testability, followed by some ad hoc design-for-testability rules that can be used to enhance testability of combinational circuits. Chapter 4 deals with test generation and response evaluation techniques used in BIST (built-in self-test) schemes for VLSI chips. Table of Contents: Introduction / Fault Detection in Logic Circuits / Design for Testability / Built-in Self-Test / References Pragmatic Logic presents the analysis and design of digital logic systems. The author begins with a brief study of binary and hexadecimal number systems and then looks at the basics of Boolean algebra. The study of logic circuits is divided into two parts, combinational logic, which has no memory, and sequential logic, which does. Numerous examples highlight the principles being presented. The text ends with an introduction to digital logic design using Verilog, a hardware description language. The chapter on Verilog can be studied along with the other chapters in the text. After the reader has completed combinational logic in Chapters 4 and 5, sections 9.1 and 9.2 would be appropriate. Similarly, the rest of Chapter 9 could be studied after completing sequential logic in Chapters 6 and 7. This short lecture book will be of use to students at any level of electrical or computer engineering and for practicing engineers or scientists in any field looking for a practical and applied introduction to digital logic. The author's "pragmatic" and applied style gives a unique and helpful "non-idealist, practical, opinionated" introduction to digital systems. This textbook for courses in Digital Systems Design introduces students to the fundamental hardware used in modern computers. Coverage includes both the classical approach to digital system design (i.e., pen and paper) in addition to the modern hardware description language (HDL) design approach (computer-based). Using this textbook enables readers to design digital systems using the modern HDL approach, but they have a broad foundation of knowledge of the underlying hardware and theory of their designs. This book is designed to match the way the material is actually taught in the classroom. Topics are presented in a manner which builds foundational knowledge before moving onto advanced topics. The author has designed the presentation with learning goals and assessment at its core. Each section addresses a specific learning outcome that the student should be able to "do" after its completion. The concept checks and exercise problems provide a rich set of assessment tools to measure student performance on each outcome. For the first time in book form, this comprehensive and systematic monograph presents methods for the reversible synthesis of logic functions and circuits. It is illustrated with a wealth of examples and figures that describe in detail the systematic methodologies of synthesis using reversible logic. This textbook for courses in Digital Systems Design introduces students to the fundamental hardware used in modern computers. Coverage includes both the classical approach to digital system design (i.e., pen and paper) in addition to the modern hardware description language (HDL) design approach (computer-based). Using this textbook enables readers to design digital systems using the modern HDL approach, but they have a broad foundation of knowledge of the underlying hardware and theory of their designs. This book is designed to match the way the material is actually taught in the classroom. Topics are presented in a manner which builds foundational knowledge before moving onto advanced topics. The author has designed the presentation with learning Goals and assessment at its core. Each section addresses a specific learning outcome that the student should be able to "do" after its completion. The concept checks and exercise problems provide a rich set of assessment tools to measure student performance on each outcome. Verilog is a Hardware Description Language (HDL) used to design and document electronic systems. Verilog HDL allows designers to virtually design systems without expending time or resources on physical models. It is the most widely used HDL with a user community of more than 50,000 active designers. Digital Logic with an Introduction to Verilog and FPGA-Based Design provides basic knowledge of field programmable gate array (FPGA) design and implementation using Verilog, a hardware description language (HDL) commonly used in the design and verification of digital circuits. Emphasizing fundamental principles, this student-friendly textbook is an ideal resource for introductory digital logic courses. Chapters offer clear explanations of key concepts and step-by-step procedures that illustrate the real-world application of FPGA-based design. Designed for beginning students familiar with DC circuits and the C programming language, the text begins by describing of basic terminologies and essential concepts of digital integrated circuits using transistors. Subsequent chapters cover device level and logic level design in detail, including combinational and sequential circuits used in the design of microcontrollers and microprocessors. Topics include Boolean algebra and functions, analysis and design of sequential circuits using logic gates, FPGA-based implementation using CAD software tools, and combinational logic design using various HDLs with focus on Verilog. VERILOG HDL, Second Editionby Samir PalnitkarWith a Foreword by Prabhu GoelWritten forboth experienced and new users, this book gives you broad coverage of VerilogHDL. The book stresses the practical design and verification perspective of Verilog rather than emphasizing only the language aspects. The information presented is fully compliant with the IEEE 1364-2001 Verilog HDL standard. Among its many features, this edition-bull; bull; Describes state-of-the-art verification methodologies bull; Provides full coverage of gate, dataflow (RTL), behavioral and switch modeling bull: Introduces you to the Programming Language Interface (PLI) bull; Describes logic synthesis methodologies bull; Explains timing and delay simulation bull; Discusses user-defined primitives bull; Offers many practical modeling tips Includes over 300 illustrations, examples, and exercises, and a Verilog resource list. Learning objectives and summaries are provided for each chapter. About the CD-ROMThe CD-ROM contains a Verilog simulator with agraphical user interface and the source code for the examples in the book. Whatpeople are saying about Verilog HDL- "Mr.Palnitkar illustrates how and why Verilog HDL is used to develop today's most complex digital designs. This book is valuable to both the novice and the experienced Verilog user. I highly recommend it to anyone exploring Verilogbased design." -RajeevMadhavan, Chairman and CEO, Magma Design Automation "Thisbook is unique in its breadth of information on Verilog and Verilogrelatedtopics. It is fully compliant with the IEEE 1364-2001 standard, contains allthe information that you need on the basics, and devotes several chapters toadvanced topics such as verification, PLI, synthesis and modelingtechniques." -MichaelMcNamara, Chair, IEEE 1364-2001 Verilog Standards Organization Thishas been my favorite Verilog book since I picked it up in college. It is theonly book that covers practical Verilog. A must have for beginners and experts." -Berend Ozceri, Design Engineer, Cisco Systems, Inc. "Simple, logical and well-organized material with plenty of illustrations, makes this anideal textbook." -Arun K. Somani, Jerry R. Junkins Chair Professor, Department of Electrical and Computer Engineering, Iowa State University, Ames PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-044911-3 This book is a gentle but rigorous introduction to Formal Logic. It is intended primarily for use at the college level. However, it can also be used for advanced secondary school students, and it can be used at the start of graduate school for those who have not yet seen the material. The approach to teaching logic used here emerged from more than 20 years of teaching logic to students at Stanford University and from teaching logic to tens of thousands of others via online courses on the World Wide Web. The approach differs from that taken by other books in logic in two essential ways, one having to do with content, the other with form. Like many other books on logic, this one covers logical syntax and semantics and proof theory plus induction. However, unlike other books, this book begins with Herbrand semantics rather than the more traditional Tarskian semantics. This approach makes the material considerably easier for students to understand and leaves them with a deeper understanding of what logic is all about. In addition to this text, there are online exercises (with automated grading), online logic tools and applications, online videos of lectures, and an online forum for discussion. They are available at http://intrologic.stanford.edu/ Copyright: d3da400b62da975c971b599388bea072