Introduction To Fracture Mechanics Materials Ernet

This book discusses the basic principles and traditional applications of fracture mechanics, as well as the cutting-edge research in the field over the last three decades in current topics like composites, thin films, nanoindentation, and cementitious materials. Experimental methods play a major role in the study of fracture mechanics problems and are used for the determination of the major fracture mechanics quantities such as stress intensity factors, crack tip opening displacements, strain energy release rates, crack paths, crack velocities in static and dynamic problems. These methods include electrical resistance strain gauges, photoelasticity, interferometry techniques, geometric and interferometry moiré, and the optical method of caustics. Furthermore, numerical methods are often used for the determination of fracture mechanics parameters. They include finite and boundary element methods, Greens function and weight functions, boundary collocation, alternating methods, and integral transforms continuous dislocations. This third edition of the book covers the basic principles and traditional applications, as well as the latest developments of fracture mechanics. Featuring two new chapters and 30 more example problems, it presents a comprehensive overview of fracture mechanics, and includes numerous examples and unsolved problems. This book is suitable for teaching fracture mechanics courses at the undergraduate and graduate levels. A "solutions manual" is available for course instructors upon request.

Since the first edition published in 1991, this has been one of the top-selling books in the field. The first and second editions have been used as a required text in over 100 universities worldwide and have become indispensable reference for thousands of practising engineers as well. The third edition reflects recent advances in the field, althoug

Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.

On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a way that the elements perform their operating function in an efficient, safe and economic manner. For this reason the results of stress analysis are coupled with an appropriate failure criterion. Traditional failure criteria based on maximum stress, strain or energy density cannot adequately explain many structural failures that occurred at stress levels considerably lower than the ultimate strength of the material. On the other hand, experiments performed by Griffith in 1921 on glass fibers led to the conclusion that the strength of real materials is much smaller, typically by two orders of magnitude, than the theoretical strength. The discipline of fracture mechanics has been created in an effort to explain these phenomena. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. Defects can exist in a material due to its composition, as second-phase particles, debonds in composites, etc., they can be introduced into a structure during fabrication, as welds, or can be created during the service life of a component like fatigue, environment-assisted or creep cracks. Fracture mechanics studies the loading-bearing capacity of structures in the presence of initial defects. A dominant crack is usually assumed to exist.

The application of fracture mechanics to cementitious materials allows the investigation of many important factors relating to the durability of these materials. This new book provides a comprehensive and readable exposition of this subject and is written by two of the world's foremost experts.

Fracture Mechanics: Current Status, Future Prospects presents the remarkable increase in the number of tools available for engineers to deal with cracked structures in a quantitative manner. This book discusses the acceptance of the stress intensity factor as a distinguishing similitude parameter that properly accounts for the applied mechanics near crack tips in several cases of practical interest. Organized into nine chapters, this book begins with an overview of the competing micromechanics of fracture, including cleavage, rupture, ductile fracture, and intergranular creep fracture. This text then reviews the characterization of crack tip stress fields by the stress intensity factor. Other chapters consider the analysis of fatigue cracking in a large generator rotor. This book discusses as well the use of Green's functions in the determination of stress intensity factors. The final chapter deals with the size effect with regard to extension of sharp cracks in technological materials. This book is a valuable resource for environmental and mechanical engineers.

A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics) Self-contained treatment supplements standard texts by focusing on analytical methods for determining crack-tip stress and strain Page 1/5

fields. Topics include plastic zone transitions, environmental cracking, more. "Recommended." — Applied Mechanics Review. Fracture Mechanics is an essential tool to evaluate whether a component is likely to fil or not. This book has been written in a simple and step-wise manner to help readers familiarise with the basic and advanced topics. Additionally it has over 185 illustrations to further reinforce and simplify the learning process. With this coverage, the book will be useful to professionals and students of engineering.

This book is an overview of ESIS Technical Committee 4's activities since the mid-1980s. A wide range of tests is described and the numerous authors is a reflection of the wide and enthusiastic support we have had. With the establishment of the Technical Committee 4, two major areas were identified as appropriate for the activity. Firstly there was an urgent need for standard, fracture mechanics based, test methods to be designed for polymers and composites. A good deal of academic work had been done, but the usefulness to industry was limited by the lack of agreed standards. Secondly there was a perceived need to explore the use of such data in the design of plastic parts. Some modest efforts were made in early meetings to explore this, but little progress was made. In contrast things moved along briskly in the standards work and this has dominated the activity for the last fourteen years. The design issue remains a future goal.

This book presents recent advances related to the following two topics: how mechanical fields close to material or geometrical singularities such as cracks can be determined; how failure criteria can be established according to the singularity degrees related to these discontinuities. Concerning the determination of mechanical fields close to a crack tip, the first part of the book presents most of the traditional methods in order to classify them into two major categories. The first is based on the stress field, such as the Airy function, and the second resolves the problem from functions related to displacement fields. Following this, a new method based on the Hamiltonian system is presented in great detail. Local and energetic approaches to fracture are used in order to determine the fracture parameters such as stress intensity factor and energy release rate. The second part of the book describes methodologies to establish the critical fracture loads and the crack growth criteria. Singular fields for homogeneous and nonhomogeneous problems near crack tips, v-notches, interfaces, etc. associated with the crack initiation and propagation laws in elastic and elastic-plastic media, allow us to determine the basis of failure criteria. Each phenomenon studied is dealt with according to its conceptual and theoretical modeling, to its use in the criteria of fracture resistance; and finally to its implementation in terms of feasibility and numerical application. Contents 1. Introduction. Part 1: Stress Field Analysis Close to the Crack Tip 2. Review of Continuum Mechanics and the Behavior Laws. 3. Overview of Fracture Mechanics. 4. Fracture Mechanics. 5. Introduction to the Finite Element Analysis of Cracked Structures. Part 2: Crack Growth Criteria 6. Crack Propagation. 7. Crack Growth Prediction in Elements of Steel Structures Submitted to Fatigue. 8. Potential Use of Crack Propagation Laws in Fatigue Life Design.

This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.

Introduction to Fracture MechanicsElsevier

With its combination of practicality, readability, and rigor that is characteristic of any truly authoritative reference and text, Fracture Mechanics: Fundamentals and Applications quickly established itself as the most comprehensive guide to fracture mechanics available. It has been adopted by more than 100 universities and embraced by thousands of professional engineers worldwide. Now in its third edition, the book continues to raise the bar in both scope and coverage. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach. Reflecting the many advances made in the decade since the previous edition came about, this indispensable Third Edition now includes: A new chapter on environmental cracking Expanded coverage of weight functions New material on toughness test methods New problems at the end of the book New material on the failure assessment diagram (FAD) method Expanded and updated coverage of crack closure and variable-amplitude fatigue Updated solutions manual In addition to these enhancements, Fracture Mechanics: Fundamentals and Applications, Third Edition also includes detailed mathematical derivations in appendices at the end of applicable chapters; recent developments in laboratory testing, application to structures, and computational methods; coverage of micromechanisms of fracture; and more than 400 illustrations. This reference continues to be a necessity on the desk of anyone involved with fracture mechanics. It is difficult to do justice to fracture mechanics in a textbook, for the subject encompasses so many disciplines. A general survey of the field would serve no purpose other than give a collection of references. The present book by Professor E. E. Gdoutos is refreshing because it does not fall into the esoteric tradition of outlining equations and results. Basic ideas and underlying principles are clearly explained as to how they are used in application. The presentations are concise and each topic can be understood by advanced undergraduates in material science and continuum mechanics. The book is

highly recommended not only as a text in fracture mechanics but also as a reference to those interested in the general aspects of failure analysis. In addition to providing an in-depth review of the analytical methods for evaluating the fundamental quantities used in linear elastic fracture mechanics, various criteria are discussed re:O. ecting their limitations and applications. Par ticular emphases are given to predicting crack initiation, subcritical growth and the onset of rapid fracture from a single criterion. Those models in which it is assumed that the crack extends from tip to tip rely on the specific surface energy concept. The differences in the global and energy states before and after crack extension were associated with the energy required to create a unit area of crack surface. Applications were limited by the requirement of self-similar crack growth.

Almost all books available on fracture mechanics cover the majority of topics presented in this book, and often much, much more. While great as references, this makes teaching from them more difficult because the materials are not typically presented in the order that most professors cover them in their lectures and more than half the information p Theoretical treatments of fracture mechanics abound in the literature. Among the first books to address this vital topic from an applied standpoint was the first edition of Practical Fracture Mechanics in Design. Completely updated and expanded to reflect recent developments in the field, the second edition of this valuable reference concisely reviews all of the fracture modes and design methodologies needed for control and prevention of structural failures in mechanical components. Practical Fracture Mechanics in Design, Second Edition begins with the historical development of the field, which is critical in understanding the origins and purpose of the various methodologies and equations. The book goes on to provide the fundamentals, basic formulas, elementary worked examples, and references with an emphasis on linear elastic fracture mechanics (LEFM). The author also includes case studies and design problems to clarify the concepts and explain their application. New chapters cover experimental methods in fracture, fracture of composite materials, dynamic fracture, and post mortem analysis of fracture surfaces. Providing much more than a simple introduction to fracture mechanics, this critical, authoritative guide supplies easy-to-use and understand tools based on hands-on experience in design, emphasizing practical applications over heavily theoretical, rigorous mathematical derivations. Most design engineers are tasked to design against failure, and one of the biggest causes of product failure is failure of the material due to fatigue/fracture. From leading experts in fracture mechanics, this new text provides new approaches and new applications to advance the understanding of crack initiation and propagation. With applications in composite materials, layered structures, and microelectronic packaging, among others, this timely coverage is an important resource for anyone studying or applying concepts of fracture mechanics. Concise and easily understood mathematical treatment of crack tip fields (chapter 3) provides the basis for applying fracture mechanics in solving practical problems. Unique coverage of bi-material interfacial cracks (chapter 8), with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging. A full chapter (chapter 9) on the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation. A unified discussion of fracture criteria involving nonlinear/plastic deformations

Cracks and Fracture consists of nine chapters in logical sequence. In two introductory chapters, physical processes in the vicinity of the crack edge are discussed and the fracture process is described. Chapter 3 develops general basic concepts and relations in crack mechanics, such as path independent integrals, stress intensity factors and energy flux into the crack edge region. Chapters 4-7 deal with elastostatic cracks, stationary or slowly moving elastic-plastic cracks, elastodynamic crack mechanics and elastoplastic aspects of fracture, including dynamic fracture mechanics. Appendices include general formulae, the basic theory of analytic functions, introduction to Laplace and Hankel transforms and description of certain basic relations, for instance for stress waves in solids. There is an extensive bibliography, containing references to both classical and recent work, and a comprehensive index. Presents an extensive bibliography containing references to both classical and recent works and a comprehensive index Appendices include general formulas, the basic theory of analytic function to Laplace and Hankel transforms, and descriptions of certain basic relations, introduction to Laplace and Hankel stress include general formulas, the basic theory of analytic functions, introduction to Laplace index. Presents an extensive bibliography containing references to both classical and recent works and a comprehensive index Appendices include general formulas, the basic theory of analytic functions, introduction to Laplace and Hankel transforms, and descriptions of certain basic relations, for instance for stress waves in solids

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.

Fracture and Fracture Mechanics: Case Studies contains the proceedings of the Second National Conference on Fracture, held at the University of the Witwatersrand in Johannesburg, South Africa on November 26-27, 1984. This book

presents case studies in fracture and fracture mechanics and highlights the problems associated with fracture, failure analysis, and safe design in industries as diverse as mining, power generation, transport, petrochemical, and manufacturing. This book has 29 chapters divided into five sections and opens with a discussion on the role of professional complacency in bridge failures. The first section is devoted to failure investigation and covers topics ranging from failure analysis of a hydraulic retarder piston to the use of scanning electron microscopy in investigating tungsten carbide-cobalt fractured components. The second section deals with slow crack growth and considers an approach to assessing structural integrity and fatigue failures in vibrating equipment. Failures arising from repair welding and incomplete heat treatment are described. The remaining chapters explore fitness for purpose evaluation of fractures; the environmental effects of fractures; and case studies of failure prevention in industries such as petrochemical, power generation, and transportation. This monograph will be of interest to structural engineers, metallurgists, and materials scientists and technologists.

The analysis of crack problems through fracture mechanics has been applied to the study of materials such as glass, metals and ceramics because relatively simple fracture criteria describe the failure of these materials. The increased attention paid to experimental rock fracture mechanics has led to major contributions to the solving of geophysical problems. The text presents a concise treatment of the physics and mathematics of a representative selection of *Page 3/5*

problems from areas such as earthquake mechanics and prediction, hydraulic fracturing, hot dry rock geothermal energy, fault mechanics, and dynamic fragmentation.

New developments in the applications of fracture mechanics to engineering problems have taken place in the last years. Composite materials have extensively been used in engineering problems. Quasi-brittle materials including concrete, cement pastes, rock, soil, etc. all benefit from these developments. Layered materials and especially thin film/substrate systems are becoming important in small volume systems used in micro and nanoelectromechancial systems (MEMS) and NEMS). Nanostructured materials are being introduced in our every day life. In all these problems fracture mechanics plays a major role for the prediction of failure and safe design of materials and structures. These new challenges motivated the author to proceed with the second edition of the book. The second edition of the book contains four new chapters in addition to the ten chapters of the first edition. The fourteen chapters of the book cover the basic principles and traditional applications, as well as the latest developments of fracture mechanics as applied to problems of composite materials, thin films, nanoindentation and cementitious materials. Thus the book provides an introductory coverage of the traditional and contemporary applications of fracture mechanics in problems of utmost technological importance. With the addition of the four new chapters the book presents a comprehensive treatment of fracture mechanics. It includes the basic principles and traditional applications as well as the new frontiers of research of fracture mechanics during the last three decades in topics of contemporary importance, like composites, thin films, nanoindentation and cementitious materials. The book contains fifty example problems and more than two hundred unsolved problems. A "Solutions Manual" is available upon request for course instructors from the author. Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and threedimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.

Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.

FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, from internationally recognized leaders in their field, about the latest theoretical advances in fracture mechanics in concrete, reinforced concrete structures, and rock. At the same time, it functions as a superb, graduate-level introduction to fracture mechanics concepts and analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics

* Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence of damage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, and fractures of plain and reinforced concrete structures and rock. This, in turn, has resulted in the further development and refinement of fracture mechanics concepts and tools. Yet, despite the field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material and structural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoretical research from around the world in a single reference that can be used by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has been successfully applied to failures occurring in a wide array of design cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure, creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on the subject currently available, Fracture Mechanics of Concrete is both a complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers. Fracture mechanics studies the development and spreading of cracks in materials. The study uses two techniques including analytical and experimental solid mechanics. The former is used to determine the driving force on a crack and the latter is used to measure material's resistance to fracture. The text begins with a detailed discussion of fundamental concepts including linear elastic fracture mechanics (LEFM), yielding fracture mechanics, mixed mode fracture and Page 4/5

computational aspects of linear elastic fracture mechanics. It explains important topics including Griffith theory of brittle crack propagation and its Irwin and Orowan modification, calculation of theoretical cohesive strength of materials through an atomic model and analytical determination of crack tip stress field. This book covers MATLAB programs for calculating fatigue life under variable amplitude cyclic loading. The experimental measurements of fracture toughness parameters KIC, JIC and crack opening displacement (COD) are provided in the last chapter.

This book fulfills the need for a short, modern, introductory text on linear elastic fracture mechanics and its engineering applications. Suitable for use by engineering undergraduates, and other newcomers to the subject, it:- • Explains the main ideas underlying present day linear elastic fracture mechanics and how these have been developed. • Shows how the ideas can be used to carry out calculations answering the question 'Does this crack matter?' from the viewpoint of an engineering designer. • Provides an understanding of the basis of standard methods and software employed to carry out calculations. • Includes additional, more advanced material, where this will increase understanding of the sometimes formidable mathematics involved, and of the various simplifications and approximations used in practical applications. The author includes all the material central to an undergraduate introductory course and ends each chapter with an overview of the material covered to aid accessibility. Familiarity with the mechanical properties of metallic materials, and with the linear elastic stress analysis of uncracked bodies is assumed.

Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study. The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.

An introduction to the mechanics and mathematics of fracture for undergraduates in a wide range of fields, practical engineers, and other inquisitive readers with a background in at least the fundamentals of mechanics and mathematics. Describes the historical development of the fracture-mechanical concepts used today, and how these are applied in industry. Translated from the Russian; about half of the brief bibliography are works in Russian. Annotation copyrighted by Book News, Inc., Portland, OR BASIC Fracture Mechanics: Including an Introduction to Fatigue discusses the fundamentals of fracture and fatigue. The book presents a series of Beginner's All-purpose Symbolic Instruction Code (BASIC) programs that implement fracture and fatigue methods. The first chapter reviews the BASIC, while the second chapter covers elastic fracture. Chapter 3 deals with the stress intensity factors. The book also tackles the crack tip plasticity and covers crack growth. The last chapter in the text discusses some applications in fracture mechanics. The book will be of great use to engineers who want to get acquainted with fracture mechanics.

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results

Second edition of successful materials science text for final year undergraduate and graduate students. <u>Copyright: b88884ae5adf67cd40e9bc82f6f0cb31</u>