Explorations In Quantum Computing Texts In Computer Science

While applications rapidly change one to the next in our commercialized world, fundamental principles behind those applications remain constant. So if one understands those principles well enough and has ample experience in applying them, he or she will be able to develop a capacity for reaching results via conceptual thinking rather than having to A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book. 'Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume I may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students. It contains a large number of solved exercises, which are an essential complement to the text, as they will help the student to become familiar with the subject. The book may also be useful as general education for readers who want to know the fundamental principles of quantum information and computation and who have the basic background acquired from their undergraduate course in physics, mathematics, or computer science. Contents:Introduction to Classical ComputationIntroduction to Quantum MechanicsQuantum ComputationQuantum Communication Readership: Upper-level undergraduates and graduate students in physics, mathematics and computer science. Keywords: Quantum Computation; Quantum Information; Quantum Algorithms; Quantum

Communication; Quantum Cryptography; Complex Systems; Dynamical Systems; Quantum Chaos; Nanoscience; Quantum OpticsReviews: "The book by Benenti, Casati and Strini is an excellent introduction to the fascinating field of quantum computation and information. The reader is gently introduced to this field starting from the basics in computation and quantum mechanics to the more advanced topics of quantum computation of dynamical systems. The book is written in a very clear way, accessible both to undergraduate and graduate students in physics, computer science and engineering."Rosario Fazio Scuola Normale Superiore Pisa, Italy "The first volume of the present textbook aims at filling the gap between elementary introductory books and more advanced reference manuals. The choice of topics and the emphasis on concepts rather than mathematical technicalities makes it good choice for an introductory course of Quantum Information Theory for physicists or computer scientists with little background in this area. Of particular interest is the description of the links between quantum computation and quantum chaos, a research area in which the authors are leading experts, a topic rarely treated in introductory textbooks. The present volume is a welcomed addition to the existing choice of textbooks in quantum information theory and quantum computation." Professor G Massimo Palma University of Milan, Italy "This book gives a clear and exhaustive introduction to quantum computation and quantum communication. Together with the second volume it covers all the main topics in the field of quantum information theory. It is suited for a wide audience, ranging from computer scientists to physicists and engineers. It is an effective selfcontained textbook for an introductory course in quantum information theory and a precious tool for researchers who wish to approach the field."Professor Chiara Macchiavello University of Pavia, Italy "The first volume of the two-volume edition is an introduction to the main concepts of quantum computation and information. The book offers a simple, clear and systematic treatment of qubits, quantum gates, various quantum algorithms and quantum communication. The chapters on classical information theory and quantum mechanics make the book easy to read. The book is recommended to undergraduate as well as graduate students in physics, mathematics and computer science. The large number of exercises is supplemented by solutions. The reader is encouraged for active work."Professor Ioannis Antoniou Aristotle University of Thessaloniki, Greece "Besides giving an excellent introduction to the field it provides a unique perspective on the blending and cross-fertilization between the methods of quantum information and quantum chaos, both areas in which the authors are leading experts." Marcos Saraceno Comision Nac. de Energia Atomica, Argentina "The authors have done a very good job, succeeding to present the main topics of this domain with remarkable concision and clarity." Bertrand Georgeot CNRS/Universite Paul Sabatier, France "This book is, on the whole, well-written and readable. The material is presented concisely, and illustrated with simple examples and exercises ... the material in the current book is much more compact and easily learned than the phonebook-sized compendium of Nielsen and Chuang. It Page 2/11

could serve well as the text for an introductory course ... It also contains numerous exercises, which mostly seem well thought out and appropriate to the material presented."Mathematical Reviews "Reading this book one remarks from the very beginning that it is outstanding and well formulated with both mathematical and verbal respects ... This book is didactically well organized and written in a clear language. It can be best recommended to people to whom it is addressed by the authors."Zentralblatt MATH '

The traditional and ubiquitous digital computer has changed the world by processing series of binary ones and zeroes...very fast. Like the sideshow juggler spinning plates on billiard cues, the classical computer moves fast enough to keep the plates from falling off. As computers become faster and faster, more and more plates are being added to more and more cues. Imagine, then, a computer in which speed is increased not because it runs faster, but because it has a limitless army of different jugglers, one for each billiard cue. Imagine the quantum computer. Julian Brown's record of the quest for the Holy Grail of computing -- a computer that could, in theory, take seconds to perform calculations that would take today's fastest supercomputers longer than the age of the universe -- is an extraordinary tale, populated by a remarkable cast of characters, including David Deutsch of Oxford University, who first announced the possibility of computation in the Alice-in-Wonderland world of quantum mechanics; Ed Fredkin, who developed a new kind of logic gate as a true step toward universal computation; and the legendary Richard Feynman, who reasoned from the inability to model quantum mechanics on a classical computer the logical inevitability of quantum computing. For, in the fuzzily indeterminate world of the quantum, new computing power is born. Minds, Machines, and the Multiverse details the remarkable uses for quantum computing in code breaking, for quantum computers will be able to crack many of the leading methods of protecting secret information, while offering new unbreakable codes. Quantum computers will also be able to model nuclear and subatomic reactions; offer insights into nanotechnology, teleportation, and time travel; and perhaps change the way chemists and biotechnologists design drugs and study the molecules of life. Farthest along the trail blazed by these pioneers is the ability to visualize the multiple realities of the quantum world not as a mathematical abstraction, but as a real map to a world of multiple universes...a multiverse where every possible event -- from a particular chess move to a comet striking the Earth -- not only can happen, but does. Incorporating lively explanations of ion trap gates, nuclear magnetic resonance computers, quantum dots, quantum algorithms, Fourier transforms, and puzzles of quantum physics, and illustrated with dozens of vivid diagrams, Minds, Machines, and the Multiverse is a mindstretching look at the still-unbuilt but fascinating machines that, in the words of physicist Stanley Williams, "will reshape the face of science" and offer a new window into the secrets of an infinite number of potential universes.

This book discusses the emerging topic of Smart TV security, including its implications on consumer privacy. The author

presents chapters on the architecture and functionality of Smart TVs, various attacks and defenses, and associated risks for consumers. This includes the latest attacks on broadcast-related digital services and built-in media playback, as well as access to integrated cameras and microphones. This book is a useful resource for professionals, researchers and students engaged with the field of Smart TV security.

Nanoscale devices differ from larger microscale devices because they depend on the physical phenomena and effects that are central to their operation. This textbook illuminates the behavior of nanoscale devices by connecting them to the electronic, as well as magnetic, optical and mechanical properties, which fundamentally affect nanoscale devices in fascinating ways. Their small size means that an understanding of the phenomena measured is even more important, as their effects are so dominant and the changes in scale of underlying energetics and response are significant. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the interactions, and others. These interactions, with the limits on size, make their physical behavior interesting, important and useful. The collection of four textbooks in the Electroscience Series culminates in a comprehensive understanding of nanoscale devices — electronic, magnetic, mechanical and optical — in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics. Mika Hirvensalo maps out the new multidisciplinary research area of quantum computing. The text contains an introduction to quantum computing as well as the most important recent results on the topic. The presentation is uniform and computer science-oriented. Thus, the book differs from most of the previous ones which are mainly physics-oriented. The special style of presentation makes the theory of quantum computing accessible to a larger audience. Many examples and exercises ease the understanding. In this second edition, a new chapter on quantum information has been added and numerous corrections, amendments, and extensions have been incorporated throughout the entire text. Subjects include formalism and its interpretation, analysis of simple systems, symmetries and invariance, methods of approximation, elements of relativistic quantum mechanics, much more. "Strongly recommended." -- "American Journal of Physics."

This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because

the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory. The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states. Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.

In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical computer. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computation seems to have begun in the early 1980s with the publications of Paul Benioff [6] [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system. If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839. Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the

field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Starting from basic principles, the book systematically covers both Heisenberg and Schrödinger realizations of quantum mechanics (in this order). It provides excellent didactic introduction to the essential principles and treats recent concepts such as entanglement and decoherence. The book gives the background needed to understand quantum cryptography, teleportation and computation, and it is especially suitable for introducing the spin. This second edition includes a more friendly presentation to Hilbert spaces, and more practical applications e.g. scanning tunneling microscope (potential barrier).

Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science. Mathematics of Quantum Computation brings together leading computer scientists, mathematicians, and physicists to provide the first interdisciplinary but mathematically focused exploration of the field's foundations and state of the art. Each section of the book addresses an area of major research, and does so with introductory material that brings newcomers quickly up to speed. Chapters that are more advanced include recent developments not yet published in the open literature. Information technology will inevitably enter into the realm of quantum mechanics, and, more than all the atomic, molecular, optical, and nanotechnology advances, it is the device-independent mathematics that is the foundation of quantum computer and information science. Mathematics of Quantum Computation offers the first up-to-date coverage that has the technical depth and breadth needed by those interested in the challenges being confronted at the frontiers of research.

Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-

dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.

This book discusses novel intelligent-system algorithms and methods in cybernetics, presenting new approaches in the field of cybernetics and automation control theory. It constitutes the proceedings of the Cybernetics and Automation Control Theory Methods in Intelligent Algorithms Section of the 8th Computer Science On-line Conference 2019 (CSOC 2019), held on-line in April 2019.

Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.

An exploration of quantum entanglement and the ways in which it contradicts our everyday assumptions about the ultimate nature of reality. Quantum physics is notable for its brazen defiance of common sense. (Think of Schrödinger's Cat, famously both dead and alive.) An especially rigorous form of quantum contradiction occurs in experiments with entangled particles. Our common assumption is that objects have properties whether or not anyone is observing them, and the measurement of one can't affect the other. Quantum entanglement—called by Einstein "spooky action at a distance"—rejects this assumption, offering impeccable reasoning and irrefutable evidence of the opposite. Is quantum entanglement mystical, or just mystifying? In this volume in the MIT Press Essential Knowledge series, Jed Brody equips readers to decide for themselves. He explains how our commonsense assumptions impose constraints—from which entangled particles break free. Brody explores such concepts as local realism, Bell's inequality, polarization, time dilation, and special relativity. He introduces readers to imaginary physicists Alice and Bob and their photon analyses; points out that it's easier to reject falsehood than establish the truth; and reports that some physicists explain entanglement by arguing that we live in a cross-section of a higher-dimensional reality. He examines a variety of viewpoints held

by physicists, including quantum decoherence, Niels Bohr's Copenhagen interpretation, genuine fortuitousness, and QBism. This relatively recent interpretation, an abbreviation of "quantum Bayesianism," holds that there's no such thing as an absolutely accurate, objective probability "out there," that quantum mechanical probabilities are subjective judgments, and there's no "action at a distance," spooky or otherwise.

This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.

By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers - and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, timetested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for

Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.

This book presents real-world problems and exploratory research that describes novel approaches in software engineering, cybernetics and algorithms in the context of intelligent systems. It constitutes the refereed proceedings of the 3rd Computational Methods in Systems and Software 2019 (CoMeSySo 2019) conference, a groundbreaking online conference that provides an international forum for discussing the latest high-quality research results.

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics. "I think I can safely say that nobody understands quantum mechanics." #Richard Feynman# Basing his discussion on a small number of conceptually simple models (the two-level atom, the two-slit interferometer), the author addresses a number of conceptually interesting questions concerning the puzzles of quantum mechanics. Though the phenomena arising from quantum interference are central, he maintains that they are not the only mystery in quantum mechanics: the deep connection between spin and the statistics of identical particles, the "ghostly" long-range effects that correlated particles exert on each other, and the perplexing role of topology in the interactions of charged particles and electromagnetic fields, are all conundrums yet to be understood.

Cryptographic Primitives in Blockchain Technology provides an introduction to the mathematical and cryptographic concepts behind blockchain technologies and shows how they are applied in blockchain-based systems.

Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. Although it is self-contained, this book is part of a two-volume set on Visual Quantum Mechanics. The first book appeared in 2000, and earned the European Academic Software Award in 2001 for oustanding innovation in its field. While topics in book one mainly concerned quantum mechanics in one- and two-dimensions, book two sets out to present three-dimensional systems, the hydrogen atom, particles with spin, and relativistic particles. Together the two volumes constitute a complete course in quantum mechanics that places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor.

This book gathers the refereed proceedings of the Intelligent Algorithms in Software Engineering Section of the 9th Computer Science On-line Conference 2020 (CSOC 2020), held on-line in April 2020. Software engineering research and its applications to intelligent algorithms have now assumed an essential role in computer science research. In this book, modern research methods,

together with applications of machine and statistical learning in software engineering research, are presented. Quantum computers are set to kick-start a second computing revolution in an exciting and intriguing way. Learning to program a Quantum Processing Unit (QPU) is not only fun and exciting, but it's a way to get your foot in the door. Like learning any kind of programming, the best way to proceed is by getting your hands dirty and diving into code. This practical book uses publicly available quantum computing engines, clever notation, and a programmer's mindset to get you started. You'll be able to build up the intuition, skills, and tools needed to start writing quantum programs and solve problems that you care about. This book highlights practical quantum key distribution systems and research on the implementations of next-generation quantum communication, as well as photonic quantum device technologies. It discusses how the advances in quantum computing and quantum physics have allowed the building, launching and deploying of space exploration systems that are capable of more and more as they become smaller and lighter. It also presents theoretical and experimental research on the potential and limitations of secure communication and computation with quantum devices, and explores how security can be preserved in the presence of a quantum computer, and how to achieve long-distance quantum communication. The development of a real quantum computer is still in the early stages, but a number of research groups have investigated the theoretical possibilities of such computers. Explore the principles and practicalities of quantum computing Key Features Discover how quantum computing works and delve into the math behind it with this quantum computing textbook Learn how it may become the most important new computer technology of the century Explore the inner workings of quantum computing technology to quickly process complex cloud data and solve problems Book Description Quantum computing is making us change the way we think about computers. Quantum bits, a.k.a. gubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples. What you will learn See how quantum computing works, delve into the math behind it, what makes it different, and why it is so powerful with this quantum computing textbook Discover the complex, mind-bending mechanics that underpin quantum systems Understand the necessary concepts behind classical and quantum computing Refresh and extend your grasp of essential mathematics, computing, and quantum theory Explore the main applications of quantum computing to the fields of scientific computing, AI, and elsewhere Examine a detailed overview of gubits, quantum circuits, and quantum algorithm Who this book is for Dancing with Qubits is a quantum computing textbook for those who want to deeply explore the inner workings of quantum computing. This entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.

Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.

Explorations in Quantum ComputingSpringer Science & Business Media

Based on a Cal Tech course, this is an outstanding introduction to formal quantum mechanics for advanced undergraduates in applied physics. The treatment's exploration of a wide range of topics culminates in two eminently practical subjects, the semiconductor transistor and the laser. Each chapter concludes with a set of problems. 1982 edition.

This book contains selected papers presented at the First NASA International Conference on Quantum Computing and Quantum Communications, QCQC'98, held in Palm Springs, California, USA in February 1998. As the record of the first large-scale meeting entirely devoted to quantum computing and communications, this book is a unique survey of the state-of-the-art in the area. The 43 carefully reviewed papers are organized in topical sections on entanglement and quantum algorithms, quantum cryptography, quantum copying and quantum information theory, quantum error correction and fault-tolerant quantum computing, and embodiments of quantum computers. First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.

Most of us are unaware of how much we depend on quantum mechanics on a day-to-day basis. Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in. Watch a Video

Copyright: 0b521e23f150718d6bd642f1e1965fec