Experiments In Modern Physics 2nd Edition This innovative modern physics textbook is intended as a first introduction to quantum mechanics and its applications. Townsend's new text shuns the historical ordering that characterizes other so-called modern physics textbooks and applies a truly modern approach to this subject, starting instead with contemporary single-photon and single-atom interference experiments. The text progresses naturally from a thorough introduction to wave mechanics through applications of quantum mechanics to solid-state, nuclear, and particle physics, thereby including most of the topics normally presented in a modern physics course. The present text is an outgrowth of such a laboratory course given by the author at the University of Rochester between 1959 and 1963. It consisted of a one-year course with two 3-hour meetings in the laboratory and two 1-hour lecture meetings weekly; the students had access to the laboratory at all times and, in general, worked during hours of their own choice well in excess of the scheduled periods. The students worked in pairs, which in most cases provides a highly motivating and successful relationship. The material included in this course was selected from those experiments in atomic and nuclear physics that have laid the foundation and provided the evidence for modern quantum theory. The experiments were set up in such a fashion that they could be completed in a two- to four-week period of normal work taking into account the other demands on the student's time. The first edition of this classic book has become the authoritative reference for physicists desiring to master the finer points of statistical data analysis. This second edition contains all the important material of the first, much of it unavailable from any other sources. In addition, many chapters have been updated with considerable new material, especially in areas concerning the theory and practice of confidence intervals, including the important Feldman-Cousins method. Both frequentist and Bayesian methodologies are presented, with a strong emphasis on techniques useful to physicists and other scientists in the interpretation of experimental data and comparison with scientific theories. This is a valuable textbook for advanced graduate students in the physical sciences as well as a reference for active researchers. Book jacket. A revision of the leading text on experimental physics. The feature of this book that has made it one of the most loved texts on the subject is that it goes far beyond a mere description of key experiments in physics. The author successfully provides the reader with an understanding and appreciation of the 'physics' behind the experiments. The second edition will be an extensive revision introducing many new devices, including the use of computers and software programs, that have come into use since the publication of the first edition. In addition the important areas of condensed matter physics and optical physics will be added, including two entirely new chapters on lasers and optics. Modern analysis and acquisition techniques Integration with matlab for data analysis and display New experiments include fundamentals of lasers Introduction to Modern Physics, Second Edition is a 16-chapter text that discusses the principles of modern physics. This book deals first with the basic topics of modern science including the atomic nature of matter and electricity; the theory of relativity; the old quantum theory; waves and particles; and the Schrödinger equation. The subsequent chapters including the atomic nature of matter and electricity; the theory of relativity; the old quantum theory; waves and particles; and the Schrödinger equation. The subsequent chapter cover other general topics of molecular spectra, superconductivity, and the biological effects of radiation, illustrating the fundamental quantum theory of angular momentum and the harmonic oscillator. The remaining chapters explore the properties of nucleus, nuclear transformation, and interactions of particles. This book is an invaluable source for undergraduate quantum mechanics students. This up-to-date volume provides an essential part of undergraduate physics training. Until now, students were often expected to learn many experimental methods in the laboratory without proper introduction. The broad coverage of available techniques includes discussion of state-of-the-art electronic equipment, as well as such topics as discrete semi-conductor devices, signal instrumentation, and X-ray diffraction methods. Professor Dunlap's text will serve not only as a complete introduction for students but also as a reference work for technicians throughout a professional career. In addition to tutorial discussion presented, tables of numerical data and constants are included, further enhancing the book as a permanent reference. Comprehensive lab procedures for introductory physics Experiments in Physics is a lab manual for an introductory calculus-based physics class. This collection of 32 experiments includes laboratory procedures in the areas of mechanics, heat, electricity, magnetism, optics, and modern physics, with post-lab questions designed to help students analyze their results more deeply. Introductory material includes guidance on error analysis, significant figures, graphical analysis and more, providing students with a convenient reference throughout the duration of the course. Bring Modern Physics to Life with a Realistic Software Simulation! Enhance the thorough coverage of Krane's Modern Physics 2e with hands-on, real-world experience! Modern Physics Simulations, developed by the Consortium for Upper-Level Physics Software (CUPS), offers complex, realistic calculations of models of various physical systems. Like all of the CUPS simulations, it is remarkably easy to use, yet sophisticated enough for explorations of new ideas. Important Features Include: * Powerful simulations covering Historic Experiments in Electron Diffraction, Laser Cavities & Dynamics, Classical Scattering, Nuclear Properties & Decays, Special Relativity, Quantum Mechanics, and the Hydrogen Atom & the H2+ Molecule. * Pascal source code for all programs and a number of exercises suggesting specific ways the programs can be modified. * Graphical (often animated) displays in most simulations. The entire CUPS simulation series consists of nine books/software simulations which cover Astrophysics, Electricity and Magnetism, Classical Mechanics, Modern Physics, Quantum Mechanics, Nuclear and Particle Physics, Solid State Physics, Thermal and Statistical Physics, and Waves and Optics. A comprehensive and engaging textbook, providing a graduate-level, non-historical, modern introduction of quantum mechanical concepts. "The fourth edition of this book has been widely revised. It includes additional chapters and some sections are complemented with either new ones or an extension of their content. In this latest edition a complete treatment of the physics and properties of semiconductors is presented, covering transport phenomena in semiconductors, scattering mechanisms, radiation effects and displacement damages. Furthermore, this edition presents a comprehensive treatment of the Coulomb scattering on screened nuclear potentials resulting from electrons, protons, light-and heavy-ions -- ranging from (very) low up to ultra-relativistic kinetic energies -- and allowing one to derive the corresponding NIEL (non-ionizing energy-loss) doses deposited in any material. The contents are organized into two parts: Chapters 1 to 7 cover Particle Interactions and Displacement Damage while the remaining chapters focus on Radiation Environments and Particle Detection. This book can serve as reference for graduate students and final-year undergraduates and also as supplement for courses in particle, astroparticle, space physics and instrumentation. A section of the book is directed toward courses in medical physics. Researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation will also find the book useful."-- The papers in this volume discuss both the theoretical concepts and experiments of the fundamental problems associated with the interpretation of Quantum Mechanics. The major theme is the continuation of the discussion between Bohr and Einstein in the light of modern technology which can turn gedanken experiments into realizable ones. Differences between various interpretations, and results of recently performed experiments (tests of Bell's inequalities, neutron interferometry, fourth order interferometry) are presented. A wide scope of possible interpretations or views are covered but no preference is given to any particular one. In addition, philosophical problems associated with the question of foundations of quantum mechanics are also discussed. This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization. The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the LandauOCoPomeranchukOCoMigdal effect, an extended relativistic treatment of nucleusOConucleus screened Coulomb scattering, and transport of charged particles inside the heliosphere. Furthermore, the displacement damage (NIEL) in semiconductors has been revisited to account for recent experimental data and more comprehensive comparisons with results previously obtained. This book will be of great use to graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, space physics and instrumentation. A part of the book is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation." A unique presentation of our current understanding of particle physics for researchers, advanced undergraduate and graduate students. Thisbookgrewoutof anongoing e?orttomodernizeColgate University's three-term,introductory,calculus-level physicscourse. Thebookisforthe ?rst term of this course and is intended to help ?rst-year college students make a good transition from high-school physics to university physics. Thebookconcentrates onthephysicsthatexplainswhywebelievethat atoms exist and have the properties we ascribe to them. This story line, which motivates much of our professional research, has helped us limit the material presented to a more humane and more realistic amount than is presented in many beginning university physics courses. The theme of atoms also supports the presentation of more non-Newtonian topics and ideas than is customary in the ?rst term of calculus-level physics. We think it is important and desirable to introduce students sooner than usual to some of the major ideas that shape contemporary physicists' views of the nature and behavior of matter. Here in the second decade of the twenty-?rst century such a goal seems particularly appropriate. The quantum nature of atoms and light and the mysteries associated with quantum behavior clearly interest our students. By adding and - phasizing more modern content, we seek not only to present some of the physics that engages contemporary physicists but also to attract students to take more physics. Only a few of our beginning physics students come to us sharply focused on physics or astronomy. Nearly all of them, h- ever, have taken physics in high school and found it interesting. A revision of the leading text on experimental physics. The feature of this book that has made it one of the most loved texts on the subject is that it goes far beyond a mere description of key experiments in physics. The authors successfully provide the reader with an understanding and appreciation of the 'physics' behind the experiments With the help of new co-author Frank Wolf, the authors have developed digital signal processing (DSP) for the undergraduate laboratory, based on software they will create using commercial hardware from National Instruments. With DSP, . They will introduce DSP in 4 classic experiments: NMR, magnetic moment of the muon, the Faraday effect, and the Mössbauer experiment. They will also add sections on Pulsed NMR, photon counting and scanning probe microscopy. Two new appendices will be added covering LabView software as well as How to use an Oscilloscope. The authors have also added many more examples to the Data and Error Analysis section as students have a tough time with this topic. topic. New to this edition: * New appendices on LabView software and how to use an oscilloscope * More detailed examples of Data and Error Analysis * Added experiements in Pulsed NMR, Photon counting and Scanning probe miscroscopy Modern Physics, Second Edition provides a clear, precise, and contemporary introduction to the theory, experiment, and applications of modern physics. This eagerly awaited second edition puts the modern back into modern physics courses. Pedagogical features throughout the text focus the reader on the core concepts and theories while offering optional, more advanced sections, examples, and cutting-edge applications to suit a variety of courses. Critically acclaimed for his lucid style, in the second edition, Randy Harris applies the same insights into recent developments in physics, engineering, and technology. Physics at the Turn of the 20th Century, Special Relativity, Waves and Particles II: Betctromagnetic Radiation Behaving as Particles, Waves and Particles Matter Beh Tipler and Llewellyn's acclaimed text for the intermediate-level course (not the third semester of the introductory course) guides students through the foundations and wide-ranging applications of modern physics with the utmost clarity--without sacrificing scientific integrity. Physics: Introduction to Electromagnetic Theory has been written for the first-year students of B. Tech Engineering Degree Courses of all Indian Universities following the guideline and syllabus as recommended by AICTE. The book, written in a very simple and lucid way, will be very much helpful to reinforce understanding of different aspects to meet the engineering student's needs. Writing a text-cum manual of this category poses several challenges providing enough content without sacrificing the essentials, highlighting the key features, presenting in a novel format and building informative assessment. This book on engineering physics will prepare students to apply the knowledge of Electromagnetic Theory to tackle 21st century and onward engineering challenges and address the related questions. Some salient features of the book: Expose basic science to the engineering students to the fundamentals of physics and to enable them to get an insight of the subject. To develop knowledge on critical questions solved and supplementary problems covering all types of medium and advanced level problems in a very logical and systematic manner. Some essential information for the users under the heading "Know more" for clarifying some basic information as well as comprehensive synopsis of formulae for a quick revision of the basic principles. Constructive manner of presentation so that an Engineering degree students can prepare to work in different sectors or in national laboratories at the very forefront of technology One of Smithsonian's Favorite Books of 2018 One of Forbes's 2018 Best Books About Astronomy, Physics and Mathematics One of Kirkus's Best Books of 2018 The intellectual adventure story of the "double-slit" experiment, showing how a sunbeam split into two paths first challenged our understanding of light and then the nature of reality itself--and continues to almost 200 years later. Many of science's greatest minds have grappled with the simple yet elusive "double-slit" experiment. Thomas Young devised it in the early 1800s to show that light behaves like a wave, and in doing so opposed Isaac Newton. Nearly a century later, Albert Einstein showed that light comes in quanta, or particles, and the experiment became key to a fierce debate between Einstein and Niels Bohr over the nature of reality. Richard Feynman held that the double slit embodies the central mystery of the quantum world. Decade after decade, hypothesis after hypothesis, scientists have returned to this ingenious experiment to help them answer deeper and deeper questions about the fabric of the universe. How can a single particle behave both like a particle and a wave? Does a particle exist before we look at it, or does the very act of looking create reality? Are there hidden aspects to reality missing from the orthodox view of quantum physics? Is there a place where the quantum world ends and the familiar classical world of our daily lives begins, and if so, can we find it? And if there's no such place, then does the universe split into two each time a particle goes through the double slit? With his extraordinarily gifted eloquence, Anil Ananthaswamy travels around the world and through history, down to the smallest scales of physical reality we have yet fathomed. Through Two Doors at Once is the most fantastic voyage you can take. A complete basic undergraduate course in modern optics for students in physics, technology, and engineering. The first half deals with classical physical optics; the second, quantum nature of light. Solutions. The Book Presents A Comprehensive Treatment Of Quantum Mechanics At The Post Graduate Level. The Emphasis Is On The Physical Foundations And The Mathematical Framework Of Quantum Mechanics; Applications To Specific Problems Are Taken Up Only To Illustrate A Principle Or A Calculational Technique Under Discussion. The Book Begins With A Preview Of The Conceptual Problem Peculiar To Quantum Mechanics. The Introductory Chapter Also Contains A Formulation Of The Basic Laws Of Motion In Quantum Mechanics In Terms Of The Feynman Postulates. Chapter 2 Contains A Detailed Exposition Of The Linear Vector Spaces And Representation Theory. In Chapter 3 The Basic Principles Of Quantum Mechanics Are Introduced In The Form Of A Number Of Postulates. The Schrodinger, The Heisenberg And The Interaction Pictures Of Time Development Form The Subject Matter Of Chapter 4. An Indepth Study Of Angular Momentum Theory (Chapter 5) Is Followed By A Brief Account Of Space-Time Symmetries Including Time Reversal Invariance (Chapter 6). Scattering Theory (Chapter 7), Approximation Methods For Stationary As Well As Time-Dependent Problems (Chapter 8) And Identical Particles (Chapter 9) Receive Adequate Treatment. The Dirac, The Klein-Gordon And The Weyl Equations Are Discussed Extensively In Chapter 11 Treats Canonical Quantization Of Both Non-Relativistic Fields; Topics Covered Include The Natural System Of Units, The Dyson And The Wick Chronological Products, Normal Products, Wicks Theorem And The Feynman Diagrams. The Last Chapter (12) Discusses In Detail The Interpretational Problem In Quantum Mechanics. The Epr Paradox, The Copenhagen And The Ensemble Interpretations, Hidden-Variable Theories, Neumanns And Bell S Theorems And Bells Inequality Are Among The Topics Discussed. The Appendices Incorporate A Detailed Discussion Of Matrices Both Finite-And-Infinite Dimensional, Antilinear Operators, Dirac Delta Function And Fourier Transforms. A Number Of Problems Are Included With A View To Supplementing The Text. The Quantum Challenge, Second Edition, is an engaging and thorough treatment of the extraordinary phenomena of quantum mechanics and of the enormous challenge they present to our conception of the physical world. Traditionally, the thrill of grappling with such issues is reserved for practicing scientists, while physical science, mathematics, and engineering students are often isolated from these inspiring questions. This book was written to remove this isolation. Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics. In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed. Each of the later chapters conclude with a description of modern developments. Makes critical topics accessible by illustrating them with simple examples and figures Presents modern quantum mechanical concepts systematically and applies them consistently throughout the book Utilizes modern computational methods with MATLAB programs to solve the equations that arise in physics, and describes the programs and solutions in detail Covers foundational topics, including transition probabilities, crystal structure, reciprocal lattices, and Bloch theorem to build understanding of applications, such as lasers and semiconductor devices Features expanded exercises and problems at the end of each chapter as well as multiple appendices for quick reference Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Gui Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book. This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization. The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the Landau—Pomeranchuk—Migdal effect, an extended relativistic treatment of nucleus—nucleus screened Coulomb scattering, and transport of charged particles inside the heliosphere. Furthermore, the displacement damage (NIEL) in semiconductors has been revisited to account for recent experimental data and more comprehensive comparisons with results previously obtained. This book will be of great use to graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, space physics and instrumentation. A part of the book is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation. Errata(s) Errata Contents:Electromagnetic Interaction of Radiation in MatterNuclear Interactions in MatterRadiation Environments and Damage in Silicon SemiconductorsScintillating Media and Scintillator DetectorsSolid State DetectorsDisplacement Damage and Particle Interactions in Silicon DevicesGas Filled ChambersPrinciples of Particle Energy DeterminationSuperheated Droplet (Bubble) Detectors and CDM SearchMedical Physics Applications Readership: Researchers, academics, graduate students and professionals in accelerator, particle, astroparticle, space, applied and medical physics. Keywords:Interactions Between Radiation/Particles and Matter;High;Inter Physics; Detectors; Semiconductors; Calorimeters; Chambers; Scintillators; Silicon Pixels; Radiation Damage; Single Event Effects; Solar Cells Key Features: Covers state-of-the-art detection techniques and underlying theories Addresses topics of considerable use for professionals in medical physics, nuclear engineering, and environmental studies Contains an updated reference table set of physical properties This is the third and fully updated edition of the classic textbook on physics at the subatomic level. An up-to-date and lucid introduction to both particle and nuclear physics, the book is suitable for both experimental and theoretical physics students at the senior undergraduate and beginning graduate levels. Topics are introduced with key experiments and their background, encouraging students to think and empowering them with the capability of doing back-of-the-envelope calculations in a diversity of situations. Earlier important experiments and concepts as well as topics of current interest are covered, with extensive use of photographs and figures to convey principal concepts and show experimental data. The coverage includes new material on: Detectors and acceleratorsNucleon elastic form factor dataNeutrinos, their masses and oscillationsChiral theories and effective field theories, and lattice QCDRelativistic heavy ions (RHIC)Nuclear structure far from the region of stabilityParticle astrophysics and cosmology Errata(s) Errata for Chapter 6 Errata for Chapter 11 Presents the fundamental ideas of relativity and quantum physics. The 2015 centenary of the publication of Einstein's general theory of relativity, and the first detection of gravitational waves have focused renewed attention on the question of whether Einstein was right. This review of experimental gravity provides a detailed survey of the intensive testing of Einstein's theory of gravity, including tests in the emerging strong-field dynamical regime. It discusses the theoretical frameworks needed to analyze gravitational theories and interpret experiments. Completely revised and updated, this new edition features coverage of new alternative theories of gravity, a unified treatment of gravitational radiation, and the implications of the latest binary pulsar observations. It spans the earliest tests involving the Solar System to the latest tests using gravitational waves detected from merging black holes and neutron stars. It is a comprehensive reference for researchers and graduate students working in general relativity, cosmology, particle physics and astrophysics. Over 100 projects demonstrate composition of objects, how substances are affected by various forms of energy — heat, light, sound, electricity, etc. Over 100 illustrations. This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort This textbook for a calculus-based physics course for non-physics majors includes end-of-chapter summaries, key concepts, real-world applications, and problems. Experiments in Modern Physics lasers, ultraprecise lasers, free electron sources, cooling and trapping of atoms, quantum optics and quantum information. Selectivity and Discord addresses the fundamental question of whether there are grounds for belief in experimental results. Specifically, Allan Franklin is concerned with two problems in the use of experimental results in science: selectivity of data or analysis procedures and the resolution of discordant results. By means of detailed case studies of episodes from the history of modern physics, Franklin shows how these problems can be—and are—solved in the normal practice of science and, therefore, that experimental results may be legitimately used as a basis for scientific knowledge. One of the field's most respected introductory texts, Modern Physics provides a deep exploration of fundamental theory and experimentation. Appropriate for second-year undergraduate science and engineering students, this esteemed text presents a comprehensive introduction to the concepts and methods that form the basis of modern physics, including examinations of relativity, quantum physics, statistical physics, nuclear physics, high energy physics, astrophysics, and cosmology. A balanced pedagogical approach examines major concepts first from a historical perspective, then through a modern lens using relevant experimental evidence and discussion of recent developments in the field. The emphasis on the interrelationship of principles and methods provides continuity, creating an accessible "storyline" for students to follow. Extensive pedagogical tools aid in comprehension, encouraging students to think critically and strengthen their ability to apply conceptual knowledge to practical applications. Numerous exercises and worked examples reinforce fundamental principles. Introductory Experiments; Mechanics; Molecular Physics; Electricity and Magnetism; Optics and Atomic Physics; Condensed Matter Physics; Semiconductor Physics; Applied Physics; Nobel Prize Experiments; Student Projects; For the intermediate-level course, the Fifth Edition of this widely used text takes modern physics textbooks to a higher level. With a flexible approach to accommodate the various ways of teaching the course (both one- and two-term tracks are easily covered), the authors recognize the audience and its need for updated coverage, mathematical rigor, and features to build and support student understanding. Continued are the superb explanatory style, the up-to-date topical coverage, and the Web enhancements that gained earlier editions worldwide recognition. Enhancements include a streamlined approach to nuclear physics, thoroughly revised and updated coverage on particle physics and astrophysics, and a review of the essential Classical Concepts important to students studying Modern Physics. Copyright: 0ad6b83cdcc0c78b8d6cbacda78aba4d