Today, the scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Advanced Image Processing Techniques and Applications is an essential reference publication for the latest research on digital image processing advancements. Featuring expansive coverage on a broad range of topics and perspectives, such as image and video steganography, pattern recognition, and artificial vision, this publication is ideally designed for scientists, professionals, researchers, and academicians seeking current research on solutions for new challenges in image processing.

A newly updated and revised edition of the classic introduction to digital image processing The Fourth Edition of Digital Image Processing provides a complete introduction to the field and includes new information that updates the state of the art. The text offers coverage of new topics and includes interactive computer display imaging examples and computer programming exercises that illustrate the theoretical content of the book. These exercises can be implemented using the Programmer's Imaging Kernel System (PIKS) application program interface included on the accompanying CD. Suitable as a textbook for students or as a reference for

practitioners, this new edition provides a comprehensive treatment of these vital topics: Characterization of continuous images Image sampling and quantization techniques Two-dimensional signal processing techniques Image enhancement and restoration techniques Image analysis techniques Software implementation of image processing applications In addition, the bundled CD includes: A Solaris operating system executable version of the PIKS Scientific API A Windows operating system executable version of PIKS Scientific A Windows executable version of PIKSTool, a graphical user interface method of executing many of the PIKS Scientic operators without program compilation A PDF file format version of the PIKS Scientific C programmer's reference manual C program source demonstration programs A digital image database of most of the source images used in the book plus many others widely used in the literature Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

This unique reference presents in-depth coverage of the latest methods and applications of digital image processing describing various computer architectures ideal for satisfying specific image processing demands.

The subject of digital image processing has migrated from a graduate to a junior or senior level course as students become more proficient in mathematical background earlier in their college education. With that in mind, Introduction to Digital Image Processing is simpler in terms of mathematical derivations and eliminates derivations of

advanced s

Highly Regarded, Accessible Approach to Image Processing Using Open-Source and Commercial Software A Computational Introduction to Digital Image Processing, Second Edition explores the nature and use of digital images and shows how they can be obtained, stored, and displayed. Taking a strictly elementary perspective, the book only covers topics that involve simple mathematics yet offer a very broad and deep introduction to the discipline. New to the Second Edition This second edition provides users with three different computing options. Along with MATLAB®, this edition now includes GNU Octave and Python. Users can choose the best software to fit their needs or migrate from one system to another. Programs are written as modular as possible, allowing for greater flexibility, code reuse, and conciseness. This edition also contains new images, redrawn diagrams, and new discussions of edge-preserving blurring filters, ISODATA thresholding, Radon transform, corner detection, retinex algorithm, LZW compression, and other topics. Principles, Practices, and Programming Based on the author's successful image processing courses, this bestseller is suitable for classroom use or self-study. In a straightforward way, the text illustrates how to implement imaging techniques in MATLAB, GNU Octave, and Python. It includes numerous examples and exercises to give students hands-on practice with the material. Digital image processing and analysis is a field that continues to experience rapid growth, with applications in many facets of our lives. Areas such as medicine,

agriculture, manufacturing, transportation, communication systems, and space exploration are just a few of the application areas. This book takes an engineering approach to image processing and analysis, including more examples and images throughout the text than the previous edition. It provides more material for illustrating the concepts, along with new PowerPoint slides. The application development has been expanded and updated, and the related chapter provides step-by-step tutorial examples for this type of development. The new edition also includes supplementary exercises, as well as MATLAB-based exercises, to aid both the reader and student in development of their skills.

This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research themes. Provides mathematical methods required to describe images, image formation and different imaging systems Outlines the principle techniques used for processing digital images Relates the methods of processing and interpreting digital images to the 'physics' of imaging systems

This book covers the technology of digital image processing in various fields with big data and their applications. Readers will understand various technologies and strategies used in digital image processing as well as handling big data, using machinelearning techniques. This book will help to improve the skills of students and researchers in such fields as engineering, agriculture, and medical imaging. There is a need to be able to understand and analyse the latest developments of digital image technology. As such, this book will cover: - Applications such as biomedical science and biometric image processing, content-based image retrieval, remote sensing, pattern recognition, shape and texture analysis - New concepts in color interpolation to produce the full color from the sub-pattern bare pattern color prevalent in today's digital cameras and other imaging devices - Image compression standards that are needed to serve diverse applications - Applications of remote sensing, medical science, traffic management, education, innovation, and analysis in agricultural design and image processing - Both soft and hard computing approaches at great length in relation to major image processing tasks - The direction and development of current and future research in many areas of image processing - A comprehensive bibliography for additional research (integrated within the framework of the book) This book focuses not only on theoretical and practical knowledge in the field but also on the traditional and latest tools and techniques adopted in image processing and data science. It also provides an indispensable guide to a wide range of basic and advanced techniques in

the fields of image processing and data science.

The digital revolution over the past several decades has advanced every facet of evidence detection, photography, optimization, and interpretation. Forensic scientists and practitioners have benefited tremendously from the move from film to digital. With proper procedures in place, digital images and casework capabilities have increased tremendously in both complexity and range due to a vast array of tools to enhance evidence and photography. Forensic Digital Image Processing: Optimization of Impression Evidence provides the forensic investigator with the tools and understanding to extract, optimize, and interpret the maximum evidence possible from crime scenes to increase identifications. The book begins by examining the emergence of forensic digital image processing, and the gradual improvement and acceptance of the science over the past four decades. Coverage includes looking at the issues of image integrity and authentication including forensic image optimization and the manipulation of images. Chapters explore techniques exploiting color theory, modes, and channels to optimize signal-to-noise ratio in images. One of the greatest assets of digital image technology is the ability to combine multiple images of the same subject to create a final, blended image: one that displays the desired evidence and is especially useful for fingerprint or footwear impression. Later chapters demonstrate image subtraction, focus stacking, and high dynamic range, utilizing images in optimum focus and with substrate interference diminished or removed entirely. The authors look at fast

Fourier transform as an optimal tool for noise removal, addressing basic theory and diagnosis of the noise signatures. The book discusses the history of digital imaging techniques and their treatment within the court system. Forensic Digital Image Processing: Optimization of Impression Evidence serves as an invaluable resource and tool for practicing professionals—as well as those new to the field—to look at best practices, the latest technology, and advances in utilizing the increasing array of tools of the trade.

A complete introduction to the basic and intermediate concepts of image processing from the leading people in the field Up-to-date content, including statistical modeling of natural, anistropic diffusion, image quality and the latest developments in JPEG 2000 This comprehensive and state-of-the art approach to image processing gives engineers and students a thorough introduction, and includes full coverage of key applications: image watermarking, fingerprint recognition, face recognition and iris recognition and medical imaging. "This book combines basic image processing techniques with some of the most advanced procedures. Introductory chapters dedicated to general principles are presented alongside detailed application-orientated ones. As a result it is suitably adapted for different classes of readers, ranging from Master to PhD students and beyond." – Prof. Jean-Philippe Thiran, EPFL, Lausanne, Switzerland "Al Bovik's compendium proceeds systematically from fundamentals to today's research frontiers. Professor Bovik, himself a highly respected leader in the field, has invited an all-star

team of contributors. Students, researchers, and practitioners of image processing alike should benefit from the Essential Guide." – Prof. Bernd Girod, Stanford University, USA "This book is informative, easy to read with plenty of examples, and allows great flexibility in tailoring a course on image processing or analysis." – Prof. Pamela Cosman, University of California, San Diego, USA A complete and modern introduction to the basic and intermediate concepts of image processing – edited and written by the leading people in the field An essential reference for all types of engineers working on image processing applications Up-to-date content, including statistical modelling of natural, anisotropic diffusion, image quality and the latest developments in JPEG 2000 Binary Digital Image Processing is aimed at faculty, postgraduate students and industry specialists. It is both a text reference and a textbook that reviews and analyses the research output in this field of binary image processing. It is aimed at both advanced researchers as well as educating the novice to this area. The theoretical part of this book includes the basic principles required for binary digital image analysis. The practical part which will take an algorithmic approach addresses problems which find applications beyond binary digital line image processing. The book first outlines the theoretical framework underpinning the study of digital image processing with particular reference to those needed for line image processing. The theoretical tools in the first part of the book set the stage for the second and third parts, where low-level binary image processing is addressed and then intermediate level processing of binary line

images is studied. The book concludes with some practical applications of this work by reviewing some industrial and software applications (engineering drawing storage and primitive extraction, fingerprint compression). Outlines the theoretical framework underpinning the study of digital image processing with particular reference to binary line image processing Addresses low-level binary image processing, reviewing a number of essential characteristics of binary digital images and providing solution procedures and algorithms Includes detailed reviews of topics in binary digital image processing with up-to-date research references in relation to each of the problems under study Includes some practical applications of this work by reviewing some common applications Covers a range of topics, organised by theoretical field rather than being driven by problem definitions

Digital image sequences (including digital video) are increasingly common and important components in technical applications ranging from medical imaging and multimedia communications to autonomous vehicle navigation. The immense popularity of DVD video and the introduction of digital television make digital video ubiquitous in the consumer domain. Digital Image Sequence Processing, Compression, and Analysis provides an overview of the current state of the field, as analyzed by leading researchers. An invaluable resource for planning and conducting research in this area, the book conveys a unified view of potential directions for further industrial development. It offers an in-depth treatment of the latest perspectives on processing,

compression, and analysis of digital image sequences. Research involving digital image sequences remains extremely active. The advent of economical sequence acquisition, storage, and display devices, together with the availability of computing power, opens new areas of opportunity. This volume delivers the background necessary to understand the strengths and weaknesses of current techniques and the directions that consumer and technical applications may take over the coming decade.

Meant for students and practicing engineers, this book provides a clear, comprehensive and up-to-date introduction to Digital Image Processing in a pragmatic style. Illustrative approach, practical examples and MATLAB applications given in the book help in bringing theory to life.

This revised and expanded new edition of an internationally successful classic presents an accessible introduction to the key methods in digital image processing for both practitioners and teachers. Emphasis is placed on practical application, presenting precise algorithmic descriptions in an unusually high level of detail, while highlighting direct connections between the mathematical foundations and concrete implementation. The text is supported by practical examples and carefully constructed chapter-ending exercises drawn from the authors' years of teaching experience, including easily adaptable Java code and completely worked out examples. Source code, test images and additional instructor materials are also provided at an associated website. Digital Image Processing is the definitive textbook for students, researchers,

and professionals in search of critical analysis and modern implementations of the most important algorithms in the field, and is also eminently suitable for self-study. Learn about state-of-the-art digital image processing without the complicated math and programming... You don't have to be a preeminent computer scientist or engineer to get the most out of today's digital image processing technology. Whether you're working in medical imaging, machine vision, graphic arts, or just a hobbyist working at home, this book will get you up and running in no time, with all the technical know-how you need to perform sophisticated image processing operations. Designed for end users, as well as an introduction for system designers, developers, and technical managers, this book doesn't bog you down in complex mathematical formulas or lines of programming code. Instead, in clear down-to-earth language supplemented with numerous example images and the ready-to-run digital image processing program on the enclosed disk, it schools you, step-by-step, in essential digital image processing concepts, principles, techniques, and technologies. Disk contains sample image files and a ready-to-run digital image processing program that lets you do as you learn detailed step-by-step guides to the most commonly used operations, including references to real-world applications and implementations hundreds of before and after images that help illustrate all the operations described comprehensive coverage of current hardware and the best methods for acquiring, displaying, and processing digital images Hands-on text for a first course aimed at end-users, focusing on concepts, practical

issues and problem solving.

Similar to the way in which computer vision and computer graphics act as the dual fields that connect image processing in modern computer science, the field of image processing can be considered a crucial middle road between the vision and graphics fields. Research Developments in Computer Vision and Image Processing: Methodologies and Applications brings together various research methodologies and trends in emerging areas of application of computer vision and image processing. This book is useful for students, researchers, scientists, and engineers interested in the research developments of this rapidly growing field. Whether for computer evaluation of otherworldly terrain or the latest high definition 3D blockbuster, digital image processing involves the acquisition, analysis, and processing of visual information by computer and requires a unique skill set that has yet to be defined a single text. Until now. Taking an applications-oriented, engineering approach, Digital Image Processing and Analysis provides the tools for developing and advancing computer and human vision applications and brings image processing and analysis together into a unified framework. Providing information and background in a logical, as-needed fashion, the author presents topics as they become necessary for understanding the practical imaging model under study. He offers a conceptual presentation of the material for a solid understanding of complex topics and discusses the theory and foundations of digital image processing and the algorithm development needed to advance the field. With liberal use of color through-out and more materials on the processing of color images than the previous edition, this book provides supplementary exercises, a new chapter on applications, and two major new tools that allow for batch processing, the analysis of imaging algorithms, and the overall research and

development of imaging applications. It includes two new software tools, the Computer Vision and Image Processing Algorithm Test and Analysis Tool (CVIP-ATAT) and the CVIP Feature Extraction and Pattern Classification Tool (CVIP-FEPC). Divided into five major sections, this book provides the concepts and models required to analyze digital images and develop computer vision and human consumption applications as well as all the necessary information to use the CVIPtools environment for algorithm development, making it an ideal reference tool for this fast growing field.

This book introduces the fundamental concepts of modern digital image processing. It aims to help the students, scientists, and practitioners to understand the concepts through clear explanations, illustrations and examples. The discussion of the general concepts is supplemented with examples from applications and ready-to-use implementations of concepts in MATLAB®. Program code of some important concepts in programming language 'C' is provided. To explain the concepts, MATLAB® functions are used throughout the book. MATLAB® Version 9.3 (R2017b), Image Acquisition Toolbox Version 5.3 (R2017b), Image Processing Toolbox, Version 10.1 (R2017b) have been used to create the book material. Meant for students and practicing engineers, this book provides a clear, comprehensive and upto-date introduction to Digital Image Processing in a pragmatic manner.

Digital Image Processing has been the leading textbook in its field for more than 20 years. As was the case with the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 edition by Gonzalez and Woods, the present edition was prepared with students and instructors in mind. 771e material is timely, highly readable, and illustrated with numerous examples of practical significance. All mainstream areas of image processing are covered, including a totally revised

introduction and discussion of image fundamentals, image enhancement in the spatial and frequency domains, restoration, color image processing, wavelets, image compression, morphology, segmentation, and image description. Coverage concludes with a discussion of the fundamentals of object recognition. Although the book is completely self-contained, a Companion Website (see inside front cover) provides additional support in the form of review material, answers to selected problems, laboratory project suggestions. and a score of other features. A supplementary instructor's manual is available to instructors who have adopted the book for classroom use. New Features *New chapters on wavelets, image morphology, and color image

A Course on Digital Image Processing with MATLAB(R) describes the principles and techniques of image processing using MATLAB(R). Every chapter is accompanied by a collection of exercises and programming assignments, the book is augmented with supplementary MATLAB code, and hints and solutions to problems are also provided. An introduction to color in three-dimensional image processing and the emerging area of multispectral image processing The importance of color information in digital image processing is greater than ever. However, the transition from scalar to vector-valued image functions has not yet been generally covered in most textbooks. Now, Digital Color Image Processing fills this pressing need with a detailed introduction to this important topic. In four comprehensive sections, this book covers: The fundamentals and requirements for color image processing from a vector-valued viewpoint Techniques for preprocessing color images Three-dimensional scene analysis using color information, as well as the emerging area of multi-spectral imaging Applications of color image processing, presented via the examination of two case studies In

addition to introducing readers to important new technologies in the field, Digital Color Image Processing also contains novel topics such as: techniques for improving three-dimensional reconstruction, three-dimensional computer vision, and emerging areas of safety and security applications in luggage inspection and video surveillance of high-security facilities. Complete with full-color illustrations and two applications chapters, Digital Color Image Processing is the only book that covers the breadth of the subject under one convenient cover. It is written at a level that is accessible for first- and second-year graduate students in electrical and computer engineering and computer science courses, and that is also appropriate for researchers who wish to extend their knowledge in the area of color image processing.

Introduction to digital imaging covering core techniques of image capture and display of monochrome and color images. Presents fundamental tools within a powerful mathematical framework. Containing illustrations, examples, and homework problems this book is suitable for advanced undergraduates and graduates in electrical engineering and computer science, and practitioners in industry.

Exploring theories and applications developed during the last 30 years, Digital Geometry in Image Processing presents a mathematical treatment of the properties of digital metric spaces and their relevance in analyzing shapes in two and three dimensions. Unlike similar books, this one connects the two areas of image processing and digital geometry,

This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern

recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples). Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.

This textbook is the third of three volumes which provide a modern, algorithmic

introduction to digital image processing, designed to be used both by learners desiring a firm foundation on which to build, and practitioners in search of critical analysis and concrete implementations of the most important techniques. This volume builds upon the introductory material presented in the first two volumes with additional key concepts and methods in image processing. Features: practical examples and carefully constructed chapter-ending exercises; real implementations, concise mathematical notation, and precise algorithmic descriptions designed for programmers and practitioners; easily adaptable Java code and completely worked-out examples for easy inclusion in existing applications; uses ImageJ; provides a supplementary website with the complete Java source code, test images, and corrections; additional presentation tools for instructors including a complete set of figures, tables, and mathematical elements.

Introduce your students to image processing with the industry's most prized text For 40 years, Image Processing has been the foundational text for the study of digital image processing. The book is suited for students at the college senior and first-year graduate level with prior background in mathematical analysis, vectors, matrices, probability, statistics, linear systems, and computer programming. As in all earlier editions, the focus of this edition of the book is on

fundamentals. The 4th Edition, which celebrates the book's 40th anniversary, is based on an extensive survey of faculty, students, and independent readers in 150 institutions from 30 countries. Their feedback led to expanded or new coverage of topics such as deep learning and deep neural networks, including convolutional neural nets, the scale-invariant feature transform (SIFT), maximallystable extremal regions (MSERs), graph cuts, k-means clustering and superpixels, active contours (snakes and level sets), and exact histogram matching. Major improvements were made in reorganizing the material on image transforms into a more cohesive presentation, and in the discussion of spatial kernels and spatial filtering. Major revisions and additions were made to examples and homework exercises throughout the book. For the first time, we added MATLAB projects at the end of every chapter, and compiled support packages for you and your teacher containing, solutions, image databases, and sample code. The support materials for this title can be found at www.ImageProcessingPlace.com

Digital Image Processing is a fundamental textbook designed to cater to the needs of undergraduate engineering students of computer science, electronics and electrical engineering. The book aims to provide an understanding of the principles and various processing techniques of digital images to further the utility

of images.

Basic topological algorithms are the subject of this new book. It presents their underlying theory and discusses their applications. Due to the wide variety of topics treated in the seven chapters, no attempt has been made to standardize the notation and terminology used by the authors. Each chapter, however, is self-contained and can be read independently of the others. Some of the basic terminology and fundamental concepts of digital topology are reviewed in the appendix which also describes important areas of the field. A bibliography of over 360 references is also provided. The notations and terminologies used in this book will serve to introduce readers to the even wider variety that exists in the voluminous literature dealing with topological algorithms.

This book is a detailed description of the basics of three-dimensional digital image processing. A 3D digital image (abbreviated as "3D image" below) is a digitalized representation of a 3D object or an entire 3D space, stored in a computer as a 3D array. Whereas normal digital image processing is concerned with screens that are a collection of square shapes called "pixels" and their corresponding density levels, the "image plane" in three dimensions is represented by a division into cubical graphical elements (called "voxels") that represent corresponding density levels. Inthecontextofimageprocessing,in

manycases3Dimageprocessingwill refer to the input of multiple 2D images and performing processing in order to understand the 3D space (or "scene") that they depict. This is a result of research into how to use input from image sensors such as television cameras as a basis for learning about a 3D scene, thereby replicating the sense of vision for humans or intelligent robots, and this has been the central problem in image processing research since the 1970s. However, a completely di?erent type of image with its own new problems, the 3D digital image discussed in this book, rapidly took prominence in the 1980s, particularly in the ?eld of medical imaging. These were recordings of human bodies obtained through computed (or "computerized") tomography

(CT),imagesthatrecordednotonlytheexternal,visiblesurfaceofthesubject but also, to some degree of resolution, its internal structure. This was a type of image that no one had experienced before.

The SpringerBrief covers fundamentals of digital image processing including image concept, image file formats, creating user interfaces and many practical examples of processing images using C++ and Java. These practical examples include among other creating image histograms, performing lossless image compression, detecting change in colors, similarity-based image retrieval and others. All practical examples are accompanied with an explanation how to

create programs and the obtained results. This SpringerBrief can be very useful for the undergraduate courses on image processing, providing students with the basic tools in image analysis and processing. Practitioners and researchers working in this field will also find this research useful.

Avoiding heavy mathematics and lengthy programming details, Digital Image Processing: An Algorithmic Approach with MATLAB® presents an easy methodology for learning the fundamentals of image processing. The book applies the algorithms using MATLAB®, without bogging down students with syntactical and debugging issues. One chapter can typically be completed per week, with each chapter divided into three sections. The first section presents theoretical topics in a very simple and basic style with generic language and mathematics. The second section explains the theoretical concepts using flowcharts to streamline the concepts and to form a foundation for students to code in any programming language. The final section supplies MATLAB codes for reproducing the figures presented in the chapter. Programming-based exercises at the end of each chapter facilitate the learning of underlying concepts through practice. This textbook equips undergraduate students in computer engineering and science with an essential understanding of digital image processing. It will also help them comprehend more advanced topics and

sophisticated mathematical material in later courses. A color insert is included in the text while various instructor resources are available on the author's website. Meant for students and practicing engineers, this book provides a clear, comprehensive and upto-date introduction to Digital Image Processing in a pragmatic style. An illustrative approach, practical examples and MATLAB applications given in the book help in bringing the theory to life.

In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. This book covers the fundamental basis of the optical and image processing techniques by integrating contributions from both optical and digital research communities to solve current application bottlenecks, and give rise to new applications and solutions. Besides focusing on joint research, it also aims at disseminating the knowledge existing in both domains. Applications covered include image restoration, medical imaging, surveillance, holography, etc... "a very good book that deserves to be on the bookshelf of a serious student or scientist working in these areas." Source: Optics and Photonics News

Digital Image ProcessingMathematical and Computational MethodsElsevier

Digital image processing, originally established to analyze and improve lunar images, is rapidly growing into a wealth of new appli cations, due to the enormous technical progress made in computer engineering. At present, the most important fields of growth appear to emerge in the areas of medical image processing (i. e. tomography, thermography), earth resource inventory (i. e. land usage, minerals), office automation (i. e. document storage, retrieval and reproduction) and industrial production (i. e. computer vision for mechanical ro bots). Currently, emphasis is being shifted from signal-processing re search and design-innovation activities towards cost-efficient system implementations for interactive digital image processing. For the years ahead, trends in computer engineering indicate still further advances in Large Scale Integration (LSI) and Input/Output (I/O) technologies allowing the implementation of powerful parallel and/or distributed processor architectures for real-time processing of high resolution achromatic and color images. In view of the many new developments in the field of digital image processing and recognizing the importance of discussing these developments amongst key scientists that might make use of them, ffiM Germany sponsored an international symposium on 'Advances in Digital Image Processing', held at Bad Neuenahr, Federal Republic of Germany, September 26 - 28, 1978. The interest shown in this symposium encouraged the publication of the papers presented in this volume of the ffiM Research Symposium Series.

A unique collection of algorithms and lab experiments for practitioners and researchers of digital image processing technology With the field of digital image processing rapidly expanding, there is a growing need for a book that would go beyond theory and techniques to address the underlying algorithms. Digital Image Processing Algorithms and Applications fills

the gap in the field, providing scientists and engineers with a complete library of algorithms for digital image processing, coding, and analysis. Digital image transform algorithms, edge detection algorithms, and image segmentation algorithms are carefully gleaned from the literature for compatibility and a track record of acceptance in the scientific community. The author guides readers through all facets of the technology, supplementing the discussion with detailed lab exercises in EIKONA, his own digital image processing software, as well as useful PDF transparencies. He covers in depth filtering and enhancement, transforms, compression, edge detection, region segmentation, and shape analysis, explaining at every step the relevant theory, algorithm structure, and its use for problem solving in various applications. The availability of the lab exercises and the source code (all algorithms are presented in C-code) over the Internet makes the book an invaluable self-study guide. It also lets interested readers develop digital image processing applications on ordinary desktop computers as well as on Unix machines.

Copyright: b47ab3587b9a502195bf69ed11d3597d