Digital Communication Systems Simon Haykin Market Desc: · Graduate and Undergraduate Students · Instructors in Engineering- Engineers About The Book: This book offers the most complete, up-to-date coverage available on the principles of digital communications. It focuses on basic issues, relating theory to practice wherever possible. Numerous examples, worked out in detail, have been included to help the reader develop an intuitive grasp of the theory. Because the book covers a broad range of topics in digital communications, it satisfies a variety of backgrounds and interests, and offers a great deal of flexibility for teaching the course. The author has included suggested course outlines for courses at the undergraduate or graduate levels. An introductory treatment of communication theory as applied to the transmission of information-bearing signals with attention given to both analog and digital communications. Chapter 1 reviews basic concepts. Chapters 2 through 4 pertain to the characterization of signals and systems. Chapters 5 through 7 are concerned with transmission of message signals over communication channels. Chapters 8 through 10 deal with noise in analog and digital communications. Each chapter (except chapter 1) begins with introductory remarks and ends with a problem set. Treatment is self-contained with numerous worked-out examples to support the theory. A relative newcomer to the field of wireless communications, ad hoc networking is growing quickly, both in its importance and its applications. With rapid advances in hardware, software, and protocols, ad hoc networks are now coming of age, and the time has come to bring together into one reference their principles, technologies, and techniques. The Handbook of Ad Hoc Wireless Networks does exactly that. Experts from around the world have joined forces to create the definitive reference for the field. From the basic concepts, techniques, systems, and protocols of wireless communication to the particulars of ad hoc network routing methods, power, connections, traffic management, and security, this handbook covers virtually every aspect of ad hoc wireless networking. It includes a section that explores several routing methods and protocols directly related to implementing ad hoc networks in a variety of applications. The benefits of ad hoc wireless networks are many, but several challenges remain. Organized for easy reference, The Handbook of Ad Hoc Wireless Networks is your opportunity to gain quick familiarity with the state of the art, have at your disposal the only complete reference on the subject available, and prepare to meet the technological and implementation challenges you'll encounter in practice. This best-selling, easy-to-read, communication systems text has been extensively revised to include the most exhaustive treatment of digital communications in an undergraduate level text. In addition to being the most up-to-date communications text available, Simon Haykin has added MATLAB computer experiments. Game theory -- Cognitive radio transceiver -- Cognitive radio networks -- Sustainability of the spectrum supply chain network -- Cognitive heterogeneous networks This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is also included. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things. The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study. A groundbreaking book from Simon Haykin, setting out the fundamental ideas and highlighting a range of future research directions. Thorough coverage of basic digital communication system principles ensures that readers are exposed to all basic relevant topics in digital communication system design. The use of CD player and JPEG image coding standard as examples of systems that employ modern communication principles allows readers to relate the theory to practical systems. Over 180 worked-out examples throughout the book aids readers in understanding basic concepts. Over 480 problems involving applications to practical systems such as satellite communications systems, ionospheric channels, and mobile radio channels gives readers ample opportunity to practice the concepts they have just learned. With an emphasis on digital communications, Communication Systems Engineering, Second Edition introduces the basic principles underlying the analysis and design of communication systems. In addition, this book gives a solid introduction to analog communications and a review of important mathematical foundation topics. New material has been added on wireless communication systems—GSM and CDMA/IS-94; turbo codes and iterative decoding; multicarrier (OFDM) systems; multiple antenna systems. Includes thorough coverage of basic digital communication system principles—including source coding, channel coding, baseband and carrier modulation, channel distortion, channel equalization, synchronization, and wireless communications. Includes basic coverage of analog modulation such as amplitude modulation, phase modulation, and frequency modulation as well as demodulation methods. For use as a reference for electrical engineers for all basic relevant topics in digital communication system design. This collaborative work presents the results of over twenty years of pioneering research by Professor Simon Haykin and Page 4/16 his colleagues, dealing with the use of adaptive radar signal processing to account for the nonstationary nature of the environment. These results have profound implications for defense-related signal processing and remote sensing. References are provided in each chapter guiding the reader to the original research on which this book is based. The study of communication systems is basic to an undergraduate program in electrical engineering. In this third edition, the author has presented a study of classical communication theory in a logical and interesting manner. The material is illustrated with examples and computeroriented experiments intended to help the reader develop an intuitive grasp of the theory under discussion. Introduction-Representation of Signals and Systems- Continuous-Wave Modulation Random Processes Noise in CW Modulation Systems Pulse Modulation Baseband Pulse Transmission Digital Passband Transmission-Spread-Spectrum Modulation- Fundamental Limits in Information Theory- Error Control Coding- Advanced Communication Systems A comprehensive and detailed treatment of the program SIMULINK® that focuses on SIMULINK® for simulations in Digital and Wireless Communications Modeling of Digital Communication Systems Using SIMULINK® introduces the reader to SIMULINK®, an extension of the widely-used MATLAB modeling tool, and the use of SIMULINK® in modeling and simulating digital communication systems, including wireless communication systems. Readers will learn to model a wide selection of digital communications techniques and evaluate their performance for many important channel conditions. Modeling of Digital Communication Systems Using SIMULINK® is organized in two parts. The first addresses Simulink® models of digital communications systems using various modulation, coding, channel conditions and receiver processing techniques. The $\frac{1}{Page} \frac{5}{16}$ second part provides a collection of examples, including speech coding, interference cancellation, spread spectrum, adaptive signal processing, Kalman filtering and modulation and coding techniques currently implemented in mobile wireless systems. Covers case examples, progressing from basic to complex Provides applications for mobile communications, satellite communications, and fixed wireless systems that reveal the power of SIMULINK modeling Includes access to useable SIMULINK® simulations online All models in the text have been updated to R2018a; only problem sets require updating to the latest release by the user Covering both the use of SIMULINK® in digital communications and the complex aspects of wireless communication systems, Modeling of Digital Communication Systems UsingSIMULINK® is a great resource for both practicing engineers and students with MATLAB experience. Digital communications is an elective course often taken as the second semester of an analog/digital sequence or as a follow-on course to communication systems. This new text offers the most complete, up-to-date coverage available on the principles of digital communications, focusing on core principles and relating theory to practice. Numerous examples, worked out in detail, have been included to help the reader develop an intuitive grasp of the theory. The text also incorporates MATLAB-based computer experiments throughout, as well as themed examples and a large amount of quality homework problems. Because the book covers a broad range of topics in digital communications, it should satisfy a variety of backgrounds and interests. Market Desc: Electrical Engineers Special Features: Design and MATLAB concepts have been integrated in the text-Integrates applications as it relates signals to a remote sensing system, a controls system, radio astronomy, a biomedical system and seismology About The Book: The text provides a balanced and integrated treatment of continuoustime and discrete-time forms of signals and systems intended to reflect their roles in engineering practice. This approach has the pedagogical advantage of helping the reader see the fundamental similarities and differences between discretetime and continuous-time representations. It includes a discussion of filtering, modulation and feedback by building on the fundamentals of signals and systems covered in earlier chapters of the book. This treatment of modern communication systems presents practical design applications as developed from basic principles. After covering the basic principles of digital and analogy baseband and bandpass signals, the text includes practical design examples that illustrate transmitter and receiver blocks, effects of nonlinearities, spectral characteristics and noise performance. It is designed for students studying courses in communication systems, digital and computer communications, or telecommunication systems and standards. Market_Desc: Communication Engineers, Telecommunications Professionals, Design Engineers, Electrical Engineers, System Managers Special Features: "Without neglecting coverage of analog communications, the author presents the latest emerging technologies, such as digital subscriber lines (DSL), carrierless amplitude modulation/phase modulation (CAP), and discrete multi-tone (DMT)." The author's easy-to-read writing style and superb organization makes the materials easy to understand." The book offers the use of MATLAB-- in a software laboratory for demonstrating important aspects of communication theory. About The Book: This best-selling, easy to read, communication systems book has been extensively revised to include an exhaustive treatment of digital communications. Throughout, it emphasizes the statistical underpinnings of communication theory in a complete and detailed manner. About The Book: This best-selling, easy to read, communication systems book has been extensively revised to include an exhaustive treatment of digital communications. Throughout, it emphasizes the statistical underpinnings of communication theory in a complete and detailed manner. Leading experts present the latest research results in adaptive signal processing Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. Adaptive Signal Processing presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension. Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, noncircularity, non-stationarity, and non-linearity Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material Contains contributions from acknowledged leaders in the field Adaptive Signal Processing is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering. Digital signal processing is ubiquitous. It is an essential ingredient in many of today's electronic devices, ranging from medical equipment to weapon systems. It makes the difference between dumb and intelligent systems. This book is organized into five parts: (1) Introduction, which contains an account of Prof. Constantinides' contribution to the field and brief summaries of the remaining chapters of this festschrift, (2) Digital Filters and Transforms, which covers efficient digital filtering techniques for improving signal quality, (3) Signal Processing, which provides an insight into fundamental theories, (4) Communications, which deals with some important applications of signal processing techniques, and (5) Finale, which contains a discussion on the impact of digital signal processing on our society and the closing remarks on this festschrift. Sections on important areas such as spread spectrum, cellular communications, and orthogonal frequency-division multiplexing are provided. * Computational examples are included, illustrating how to use the computer as a simulation tool, thereby allowing waveforms, spectra, and performance curves to be generated. * Overviews of the necessary background in signal, system, probability, and random process theory required for the analog and digital communications topics covered in the book. Havkin examines both the mathematical theory behind various linear adaptive filters with finite-duration impulse response (FIR) and the elements of supervised neural networks. This edition has been updated and refined to keep current with the field and develop concepts in as unified and accessible a manner as possible. It: introduces a completely new chapter on Frequency-Domain Adaptive Filters; adds a chapter on Tracking Time-Varying Systems; adds two chapters on Neural Networks; enhances material on RLS algorithms; strengthens linkages to Kalman filter theory to gain a more unified treatment of the standard, square-root and order-recursive forms; and includes new computer experiments using MATLAB software that illustrate the underlying theory and applications of the LMS and RLS algorithms. Combining theoretical knowledge and practical applications, this advanced-level textbook covers the most important aspects of contemporary digital communication systems. Introduction to Digital Communication Systems focuses on the rules of functioning digital communication system blocks, starting with the performance limits set by the information theory. Drawing on information relating to turbo codes and LDPC codes, the text presents the basic methods of error correction and detection, followed by baseband transmission methods, and single- and multi-carrier digital modulations. The basic properties of several physical communication channels used in digital communication systems are explained, showing the transmission and reception methods on channels suffering from intersymbol interference. The text also describes the most recent developments in the transmission techniques specific to wireless communications used both in wireline and wireless systems. The case studies are a unique feature of this book, illustrating elements of the theory developed in each chapter. Introduction to Digital Communication Systems provides a concise approach to digital communications, with practical examples and problems to supplement the text. There is also a companion website featuring an instructors' solutions manual and presentation slides to aid understanding. Offers theoretical and practical knowledge in a self-contained textbook on digital communications Explains basic rules of recent achievements in digital communication systems such as MIMO, turbo codes, LDPC codes, OFDMA, SC-FDMA Provides problems at the end of each chapter with an instructors' solutions manual on the companion website Includes case studies and representative communication system examples such as DVB-S, GSM, UMTS, 3GPP-LTE The clear, easy-to-understand introduction to digital communications Completely updated coverage of today's most critical technologies Step-by-step implementation coverage Trellis-coded modulation, fading channels, Reed-Solomon codes, encryption, and more Exclusive coverage of maximizing performance with advanced "turbo codes" "This is a remarkably comprehensive treatment of the field, covering in considerable detail modulation, coding (both source and channel), encryption, multiple access and spread spectrum. It can serve both as an excellent introduction for the graduate student with some background in probability theory or as a valuable reference for the practicing ommunication system engineer. For both communities, the treatment is clear and well presented." - Andrew Viterbi, The Viterbi Group Master every key digital communications technology, concept, and technique. Digital Communications, Second Edition is a thoroughly revised and updated edition of the field's classic, best-selling introduction. With remarkable clarity, Dr. Bernard Sklar introduces every digital communication technology at the heart of today's wireless and Internet revolutions. providing a unified structure and context for understanding them -- all without sacrificing mathematical precision. Sklar begins by introducing the fundamentals of signals, spectra, formatting, and baseband transmission. Next, he presents practical coverage of virtually every contemporary modulation, coding, and signal processing technique, with numeric examples and step-by-step implementation guidance. Coverage includes: Signals and processing steps: from information source through transmitter, channel, receiver, and information sink Key tradeoffs: signal-to-noise ratios, probability of error, and bandwidth expenditure Trelliscoded modulation and Reed-Solomon codes: what's behind the math Synchronization and spread spectrum solutions Fading channels: causes, effects, and techniques for withstanding fading The first complete how-to guide to turbo codes: squeezing maximum performance out of digital connections Implementing encryption with PGP, the de facto industry standard Whether you're building wireless systems. xDSL, fiber or coax-based services, satellite networks, or Internet infrastructure, Sklar presents the theory and the practical implementation details you need. With nearly 500 Page 12/16 illustrations and 300 problems and exercises, there's never been a faster way to master advanced digital communications. CD-ROM INCLUDED The CD-ROM contains a complete educational version of Elanix' SystemView DSP design software, as well as detailed notes for getting started, a comprehensive DSP tutorial, and over 50 additional communications exercises. Offers the most complete, up-to-date coverage available on the principles of digital communications. Focuses on basic issues, relating theory to practice wherever possible. Numerous examples, worked out in detail, have been included to help the reader develop an intuitive grasp of the theory. Topics covered include the sampling process, digital modulation techniques, error-control coding, robust quantization for pulse-code modulation, coding speech at low bit radio, information theoretic concepts, coding and computer communication. Because the book covers a broad range of topics in digital communications, it should satisfy a variety of backgrounds and interests. With exceptionally clear writing, Lathi takes students step by step through a history of communications systems from elementary signal analysis to advanced concepts in communications theory. The first four chapters of the text present basic principles, subsequent chapters offer ample material for flexibility in course content and level. All Topics are covered in detail, including a thorough treatment of frequency modulation and phase modulation. Numerous worked examples in each chapter and over 300 end-of-chapter problems and numerous illustrations and figures support the content. Design and MATLAB concepts have been integrated in text. ? Integrates applications as it relates signals to a remote sensing system, a controls system, radio astronomy, a biomedical system and seismology. Offers the most complete, up-to-date coverage available on the principles of digital communications. Focuses on basic issues, relating theory to practice wherever possible. Numerous examples, worked out in detail, have been included to help the reader develop an intuitive grasp of the theory. Topics covered include the sampling process, digital modulation techniques, error-control coding, robust quantization for pulse-code modulation, coding speech at low bit radio, information theoretic concepts, coding and computer communication. Because the book covers a broad range of topics in digital communications, it should satisfy a variety of backgrounds and interests, and offers a great deal of flexibility for teaching the course. The author has included suggested course outlines for courses at the undergraduate or graduate levels. Digital Communication SystemsWiley This is a concise presentation of the concepts underlying the design of digital communication systems, without the detail that can overwhelm students. Many examples, from the basic to the cutting-edge, show how the theory is used in the design of modern systems and the relevance of this theory will motivate students. The theory is supported by practical algorithms so that the student can perform computations and simulations. Leading edge topics in coding and wireless communication make this an ideal text for students taking just one course on the subject. Fundamentals of Digital Communications has coverage of turbo and LDPC codes in sufficient detail and clarity to enable hands-on implementation and performance evaluation, as well as 'just enough' information theory to enable computation of performance benchmarks to compare them against. Other unique features include space-time communication and geometric insights into noncoherent communication and equalization. The second edition of this accessible book provides readers with an introductory treatment of communication theory as applied to the transmission of informationbearing signals. While it covers analog communications, the emphasis is placed on digital technology. It begins by presenting the functional blocks that constitute the transmitter and receiver of a communication system. Readers will next learn about electrical noise and then progress to multiplexing and multiple access techniques. About The Book: The book provides a detailed, unified treatment of theoretical and practical aspects of digital and analog communication systems, with emphasis on digital communication systems. It integrates theorykeeping theoretical details to a minimum-with over 60 practical, worked examples illustrating real-life methods. The text emphasizes deriving design equations that relate performance of functional blocks to design parameters. It illustrates how to trade off between power, band-width and equipment complexity while maintaining an acceptable quality of performance. Material is modularized so that appropriate portions can be selected to teach several different courses. The book also includes over 300 problems and an annotated bibliography in each chapter. An introductory treatment of communication theory as applied to the transmission of information-bearing signals with attention given to both analog and digital communications. Chapter 1 reviews basic concepts. Chapters 2 through 4 pertain to the characterization of signals and systems. Chapters 5 through 7 are concerned with transmission of message signals over communication channels. Chapters 8 through 10 deal with noise in analog and digital communications. Each chapter (except chapter 1) begins with introductory remarks and ends with a problem set. Treatment is self-contained with numerous worked-out examples to support the theory. Fourier Analysis · Filtering and Signal Distortion · Spectral Density and Correlation · Digital Coding of Analog Waveforms · Intersymbol Interference and Its Cures · Modulation Techniques · Probability Theory and Random Processes · Noise in Analog Modulation · Optimum Receivers for Data Communication This best—selling, easy to read book offers the most complete discussion on the theories and principles behind today?s most advanced communications systems. Throughout, Haykin emphasizes the statistical underpinnings of communication theory in a complete and detailed manner. Readers are guided though topics ranging from pulse modulation and passband digital transmission to random processes and error—control coding. The fifth edition has also been revised to include an extensive treatment of digital communications. Copyright: 9fc9c700226cb21f51ea985721c75240