Currie Fundamental Mechanics Fluids Solution Manual

This is the most comprehensive introductory graduate or advanced undergraduate text in fluid mechanics available. It builds from the fundamentals, often in a very general way, to widespread applications to technology and geophysics. In most areas, an understanding of this book can be followed up by specialized monographs and the research literature. The material added to this new edition will provide insights gathered over 45 years of studying fluid mechanics. Many of these insights, such as universal dimensionless similarity scaling for the laminar boundary layer equations, are available nowhere else. Likewise for the generalized vector field derivatives. Other material, such as the generalized stream function treatment, shows how stream functions may be used in three-dimensional flows. The CFD chapter enables computations of some simple flows and provides entrée to more advanced literature. *New and generalized treatment of similar laminar boundary layers. *Generalized treatment of streamfunctions for three-dimensional flow . *Generalized treatment of vector field derivatives. *Expanded coverage of gas dynamics. *New introduction to computational fluid dynamics. *New generalized treatment of boundary conditions in fluid mechanics. *Expanded treatment of viscous flow with more examples.

The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background for reading original papers on the subject. Topics include introductory concepts from thermodynamics, including entropy, reciprocity relations, equilibrium conditions, the law of mass action and condensation; one-dimensional gasdynamics, one-dimensional wave motion, waves in supersonic flow, flow in ducts and wind tunnels, methods of measurement, the equations of frictionless flow, small-perturbation theory, transonic flow, effects of viscosity and conductivity, and much more. The text includes numerous detailed figures and several useful tables, while concluding exercises demonstrate the application of the material in the text and outline additional subjects. Advanced undergraduate or graduate physics and engineering students with at least a working knowledge of calculus and basic physics will profit immensely from studying this outstanding volume.

Fundamental Mechanics of Fluids, Fourth EditionCRC Press

Contains Fluid Flow Topics Relevant to Every EngineerBased on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches tha

Based on the authors' highly successful text Fundamentals of Fluid Mechanics, A Brief Introduction to Fluid Mechanics, 5th Edition is a streamlined text, covering the basic concepts and principles of fluid mechanics in a modern style. The text clearly presents basic analysis techniques and addresses practical concerns and applications, such as pipe flow, open-channel flow, flow measurement, and drag and lift. Extra problems in every chapter including open-ended problems, problems based on the accompanying videos, laboratory problems, and computer problems emphasize the practical application of principles. More than 100 worked examples provide detailed solutions to a variety of problems.

MECHANICS OF FLUIDS presents fluid mechanics in a manner that helps students gain both an understanding of, and an ability to analyze the important phenomena encountered by practicing engineers. The authors succeed in this through the use of several pedagogical tools that help students visualize the many difficult-to-understand phenomena of fluid mechanics. Explanations are based on basic physical concepts as well as mathematics which are accessible to undergraduate engineering students. This fourth edition includes a Multimedia Fluid Mechanics DVD-ROM which harnesses the interactivity of multimedia to improve the teaching and learning of fluid mechanics by illustrating fundamental phenomena and conveying fascinating fluid flows. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice Magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances. This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows.

This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. The rapidity with which knowledge changes makes much of past science obsolete, and often just wrong, from the present's point of view. We no longer think, for example, that heat is a material substance transferred from hot to cold bodies. But is wrong science always or even usually bad science? The essays in this volume argue by example that much of the past's rejected science, wrong in retrospect though it may be - and sometimes markedly so - was nevertheless sound and exemplary of enduring standards that transcend the particularities of culture and locale.

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

Retaining the features that made previous editions perennial favorites, Fundamental Mechanics of Fluids, Third Edition illustrates basic equations and strategies used to analyze fluid dynamics, mechanisms, and behavior, and offers solutions to fluid flow dilemmas encountered in common engineering applications. The new edition contains completely reworked line drawings, revised problems, and extended end-of-chapter questions for clarification and expansion of key concepts. Includes appendices summarizing vectors, tensors, complex variables, and *Page 1/5*

governing equations in common coordinate systems Comprehensive in scope and breadth, the Third Edition of Fundamental Mechanics of Fluids discusses: Continuity, mass, momentum, and energy One-, two-, and three-dimensional flows Low Reynolds number solutions Buoyancy-driven flows Boundary layer theory Flow measurement Surface waves Shock waves

Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.

The book presents high-quality papers presented at 3rd International Conference on Applications of Fluid Dynamics (ICAFD 2016) organized by Department of Applied Mathematics, ISM Dhanbad, Jharkhand, India in association with Fluid Mechanics Group, University of Botswana, Botswana. The main theme of the Conference is "Sustainable Development in Africa and Asia in context of Fluid Dynamics and Modeling Approaches". The book is divided into seven sections covering all applications of fluid dynamics and their allied areas such as fluid dynamics, nanofluid, heat and mass transfer, numerical simulations and investigations of fluid dynamics, magnetohydrodynamics flow, solute transport modeling and water jet, and miscellaneous. The book is a good reference material for scientists and professionals working in the field of fluid dynamics.

Uncover Effective Engineering Solutions to Practical Problems With its clear explanation of fundamental principles and emphasis on real world applications, this practical text will motivate readers to learn. The author connects theory and analysis to practical examples drawn from engineering practice. Readers get a better understanding of how they can apply these concepts to develop engineering answers to various problems. By using simple examples that illustrate basic principles and more complex examples representative of engineering applications throughout the text, the author also shows readers how fluid mechanics is relevant to the engineering field. These examples will help them develop problem-solving skills, gain physical insight into the material, learn how and when to use approximations and make assumptions, and understand when these approximations might break down. Key Features of the Text * The underlying physical concepts are highlighted rather than focusing on the mathematical equations. * Dimensional reasoning is emphasized as well as the interpretation of the results. * An introduction to engineering in the environment is included to spark reader interest. * Historical references throughout the chapters provide readers with the rich history of fluid mechanics.

This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanicsbefore concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile ins

Mechanical engineering, an engineering discipline borne of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound is sues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished rost er of consulting editors on the advisory board, each an expert in one the areas of concentra tion. The names of the consulting editors are listed on the next page of this volume. The areas of concentration are: applied mechanics; biome chan ics; computational mechanics; dynamic systems and control; energetics; mechanics of materials; processing; thermal science; and tribology.

This is the solutions manual to Fundamental Mechanics of Fluids. The text provids material on intermediate concepts of potential, viscous, incompressible and compressible flow.

The Student Support Edition of Basic College Mathematics, 8/e, brings comprehensive study skills support to students and the latest technology tools to instructors. In addition, the program now includes concept and vocabulary review material, assignment tracking and time management resources, and practice exercises and online homework to enhance student learning and instruction. With its interactive, objective-based approach, Basic College Mathematics provides comprehensive, mathematically sound coverage of topics essential to the basic college math course. The Eighth Edition features chapter-opening Prep Tests, real-world applications, and a fresh design--all of which engage students and help them succeed in the course. The Aufmann Interactive Method (AIM) is incorporated throughout the text, ensuring that students interact with and master concepts as they are presented. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. This textbook provides a concise introduction to the mathematical theory of fluid motion with the underlying physics. Different branches of fluid mechanics are developed from general to specific topics. At the end of each chapter carefully designed problems are assigned as homework, for which selected fully worked-out solutions are provided. This book can be used for self-study, as well as in conjunction with a course in fluid mechanics. Revised and updated, this text provides details on intermediate concepts of potential, viscous, incompressible and compressible flow. Material is broad-based, covering a range of topics in an introductory manner, concentrating on the classic results rather than attempting to include the most recent advances in the subject. This new edition features expanded treatment of boundary layer flows, a new chapter dealing with buoyancy-driven flows, and new problems at the end of each chapter. A solutions manual is available (0-07-015001-X). In the years since the fourth edition of this seminal work was published, active research has developed the Finite Element Method into the pre-eminent tool for the modelling of physical systems. Written by the pre-eminent professors in

their fields, this new edition of the Finite Element Method maintains the comprehensive style of the earlier editions and authoritatively incorporates the latest developments of this dynamic field. Expanded to three volumes the book now covers the basis of the method and its application to advanced solid mechanics and also advanced fluid dynamics. Volume Two: Solid and Structural Mechanics is intended for readers studying structural mechanics at a higher level. Although it is an ideal companion volume to Volume One: The Basis, this advanced text also functions as a "stand-alone" volume, accessible to those who have been introduced to the Finite Element Method through a different route. Volume 1 of the Finite Element Method provides a complete introduction to the method and is essential reading for undergraduates, postgraduate students and professional engineers. Volume 3 covers the whole range of fluid dynamics and is ideal reading for postgraduate students and professional engineers working in this discipline. Coverage of the concepts necessary to model behaviour, such as viscoelasticity, plasticity and creep, as well as shells and plates.Up-to-date coverage of new linked interpolation methods for shell and plate formations.New material on non-linear geometry, stability and buckling of structures and large deformations.

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.

Structured introduction covers everything the engineer needs to know: nature of fluids, hydrostatics, differential and integral relations, dimensional analysis, viscous flows, more. Solutions to selected problems. 760 illustrations. 1985 edition.

Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections: Governing Equations deals with the derivation of the basic conservation laws, flow kinematics, and some basic theorems of fluid mechanics. Ideal-Fluid Flow covers two- and threedimensional potential flows and surface waves. Viscous Flows of Incompressible Fluids discusses exact solutions, low-Reynolds-number approximations, boundary-layer theory, and buoyancy-driven flows. Compressible Flow of Inviscid Fluids addresses shockwaves as well as one- and multidimensional flows. Methods of Mathematical Analysis summarizes some commonly used analysis techniques. Additional appendices offer a synopsis of vectors, tensors, Fourier series, thermodynamics, and the governing equations in the common coordinate systems. The book identifies the phenomena associated with the various properties of compressible, viscous fluids in unsteady, three-dimensional flow situations. It provides techniques for solving specific types of fluid-flow problems, and it covers the derivation of the basic equations governing the laminar flow of Newtonian fluids, first assessing general situations and then shifting focus to more specific scenarios. The author illustrates the process of finding solutions to the governing equations. In the process, he reveals both the mathematical methodology and physical phenomena involved in each category of flow situation, which include ideal, viscous, and compressible fluids. This categorization enables a clear explanation of the different solution methods and the basis for the various physical consequences of fluid properties and flow characteristics. Armed with this new understanding, readers can then apply the appropriate equation results to deal with the particular

circumstances of their own work.

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies. Course of Theoretical Physics, Volume 6: Fluid Mechanics discusses several areas of concerns regarding fluid

mechanics. The book provides a discussion on the phenomenon in fluid mechanics and their intercorrelations, such as heat transfer, diffusion in fluids, acoustics, theory of combustion, dynamics of superfluids, and relativistic fluid dynamics. The text will be of great interest to researchers whose work involves or concerns fluid mechanics.

A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, Page 3/5 beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.

This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

Finite Element Analysis for Engineers introduces FEA as a technique for solving differential equations, and for application to problems in Civil, Mechanical, Aerospace and Biomedical Engineering and Engineering Science & Mechanics. Intended primarily for senior and first-year graduate students, the text is mathematically rigorous, but in line with students' math courses. Organized around classes of differential equations, the text includes MATLAB code for selected examples and problems. Both solid mechanics and thermal/fluid problems are considered. Based on the first author's class-tested notes, the text builds a solid understanding of FEA concepts and modern engineering applications.

A new edition of the bestseller on convection heattransfer A revised edition of the industry classic, Convection HeatTransfer, Fourth Edition, chronicles how the field of heattransfer has grown and prospered over the last two decades. Thisnew edition is more accessible, while not sacrificing its thoroughtreatment of the most up-to-date information on current researchand applications in the field. One of the foremost leaders in the field, Adrian Bejan haspioneered and taught many of the methods and practices commonlyused in the industry today. He continues this book's long-standingrole as an inspiring, optimal study tool by providing: Coverage of how convection affects performance, and howconvective flows can be configured so that performance isenhanced How convective configurations have been evolving, from the flatplates, smooth pipes, and single-dimension fins of the earliereditions to new populations of configurations: tapered ducts, plates with multiscale features, dendritic fins, duct and plateassemblies (packages) for heat transfer density and compactness, etc. New, updated, and enhanced examples and problems that reflect author's research and advances in the field since the lastedition A solutions manual Complete with hundreds of informative and originalillustrations, Convection Heat Transfer, Fourth Edition is the most comprehensive and approachable text for students inschools of mechanical engineering.

Wind energy's bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. "provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy." (IEEE Power & Energy Magazine, November/December 2003) "deserves a place in the library of every university and college where renewable energy is taught." (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) "a very comprehensive and well-organized treatment of the current status of wind power." (Choice, Vol. 40,

No. 4, December 2002) CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapor s in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the "heat-pipe" exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems. Fluid mechanics embraces engineering, science, and medicine. This book's logical organization begins with an introductory chapter summarizing the history of fluid mechanics and then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations. The book also fully addresses the numerical and experimental methods applied to flows. This text is specifically written to meet the needs of students in engineering and science. Overall, readers get a sound introduction to fluid mechanics.

Wireless technology is a truly revolutionary paradigm shift, enabling multimedia communications between people and devices from any location. It also underpins exciting applications such as sensor networks, smart homes, telemedicine, and automated highways. This book provides a comprehensive introduction to the underlying theory, design techniques and analytical tools of wireless communications, focusing primarily on the core principles of wireless system design. The book begins with an overview of wireless systems and standards. The characteristics of the wireless channel are then described, including their fundamental capacity limits. Various modulation, coding, and signal processing schemes are then discussed in detail, including state-of-the-art adaptive modulation, multicarrier, spread spectrum, and multiple antenna techniques. The concluding chapters deal with multiuser communications, cellular system design, and ad-hoc network design. Design insights and tradeoffs are emphasized throughout the book. It contains many worked examples, over 200 figures, almost 300 homework exercises, over 700 references, and is an ideal textbook for students. Like its predecessors, this edition presents the basic principles of the mechanics of fluids in a thorough and clear manner. It provides the essential material for an honours degree course in civil or mechanical engineering, in addition to providing

material for undergraduates studying aeronautics.

Fluid mechanics continues to dominate the world of engineering. This book bridges the gap between first and higher level text books on the subject. It shows that the approximate approaches are essentially globally averaged versions of the local treatment, that in turn is covered in considerable detail in the second edition.

Buoyancy is one of the main forces driving flows on our planet, especially in the oceans and atmosphere. These flows range from buoyant coastal currents to dense overflows in the ocean, and from avalanches to volcanic pyroclastic flows on the Earth's surface. This book brings together contributions by leading world scientists to summarize our present theoretical, observational, experimental and modeling understanding of buoyancy-driven flows. Buoyancy-driven currents play a key role in the global ocean circulation and in climate variability through their impact on deep-water formation. Buoyancy-driven currents are also primarily responsible for the redistribution of fresh water throughout the world's oceans. This book is an invaluable resource for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science and the wider Earth sciences who need a state-of-the-art reference on buoyancy-driven flows.

This book provides engineers with the tools to solve real-world heat transfer problems. It includes advanced topics not covered in other books on the subject. The examples are complex and timely problems that are inherently interesting. It integrates Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material. Copyright: 2e6dc71ac14c68ba30ff811aa16ed0d0