Clean Architecture A Craftsmans Guide To Software
Structure And Design Robert C Martin Series

The Robert C. Martin Clean Code Collection consists of two bestselling eBooks: Clean
Code: A Handbook of Agile Software Craftmanship The Clean Coder: A Code of
Conduct for Professional Programmers In Clean Code, legendary software expert
Robert C. Martin has teamed up with his colleagues from Object Mentor to distill their
best agile practice of cleaning code “on the fly” into a book that will instill within you the
values of a software craftsman and make you a better programmer--but only if you work
at it. You will be challenged to think about what'’s right about that code and what’s
wrong with it. More important, you will be challenged to reassess your professional
values and your commitment to your craft. In The Clean Coder, Martin introduces the
disciplines, techniques, tools, and practices of true software craftsmanship. This book is
packed with practical advice--about everything from estimating and coding to
refactoring and testing. It covers much more than technique: It is about attitude. Martin
shows how to approach software development with honor, self-respect, and pride; work
well and work clean; communicate and estimate faithfully; face difficult decisions with
clarity and honesty; and understand that deep knowledge comes with a responsibility to
act. Readers of this collection will come away understanding How to tell the difference
between good and bad code How to write good code and how to transform bad code
into good code How to create good names, good functions, good objects, and good
classes How to format code for maximum readability How to implement complete error
handling without obscuring code logic How to unit test and practice test-driven
development What it means to behave as a true software craftsman How to deal with
conflict, tight schedules, and unreasonable managers How to get into the flow of coding
and get past writer’s block How to handle unrelenting pressure and avoid burnout How
to combine enduring attitudes with new development paradigms How to manage your
time and avoid blind alleys, marshes, bogs, and swamps How to foster environments
where programmers and teams can thrive When to say “No”--and how to say it When
to say “Yes”--and what yes really means

Clean ArchitectureA Craftsman's Guide to Software Structure and DesignPrentice Hall
Get more out of your legacy systems: more performance, functionality, reliability, and
manageability Is your code easy to change? Can you get nearly instantaneous
feedback when you do change it? Do you understand it? If the answer to any of these
guestions is no, you have legacy code, and it is draining time and money away from
your development efforts. In this book, Michael Feathers offers start-to-finish strategies
for working more effectively with large, untested legacy code bases. This book draws
on material Michael created for his renowned Object Mentor seminars: techniques
Michael has used in mentoring to help hundreds of developers, technical managers,
and testers bring their legacy systems under control. The topics covered include
Understanding the mechanics of software change: adding features, fixing bugs,
improving design, optimizing performance Getting legacy code into a test harness
Writing tests that protect you against introducing new problems Techniques that can be
used with any language or platform—with examples in Java, C++, C, and C# Accurately
identifying where code changes need to be made Coping with legacy systems that

aren't object-oriented Handling applica;ionli}hat don't seem to have any structure This
age

book also includes a catalog of twenty-four dependency-breaking techniques that help
you work with program elements in isolation and make safer changes.
Get the most out of JavaScript for building web applications through a series of
patterns, techniques, and case studies for clean coding Key Features Write
maintainable JS code using internal abstraction, well-written tests, and well-
documented code Understand the agents of clean coding like SOLID principles, OOP,
and functional programming Explore solutions to tackle common JavaScript challenges
in building Uls, managing APIs, and writing states Book Description Building robust
apps starts with creating clean code. In this book, you’'ll explore techniques for doing
this by learning everything from the basics of JavaScript through to the practices of
clean code. You'll write functional, intuitive, and maintainable code while also
understanding how your code affects the end user and the wider community. The book
starts with popular clean-coding principles such as SOLID, and the Law of Demeter
(LoD), along with highlighting the enemies of writing clean code such as cargo culting
and over-management. You'll then delve into JavaScript, understanding the more
complex aspects of the language. Next, you'll create meaningful abstractions using
design patterns, such as the Class Pattern and the Revealing Module Pattern. You'll
explore real-world challenges such as DOM reconciliation, state management,
dependency management, and security, both within browser and server environments.
Later, you'll cover tooling and testing methodologies and the importance of
documenting code. Finally, the book will focus on advocacy and good communication
for improving code cleanliness within teams or workplaces, along with covering a case
study for clean coding. By the end of this book, you'll be well-versed with JavaScript
and have learned how to create clean abstractions, test them, and communicate about
them via documentation. What you will learn Understand the true purpose of code and
the problems it solves for your end-users and colleagues Discover the tenets and
enemies of clean code considering the effects of cultural and syntactic conventions Use
modern JavaScript syntax and design patterns to craft intuitive abstractions Maintain
code quality within your team via wise adoption of tooling and advocating best practices
Learn the modern ecosystem of JavaScript and its challenges like DOM reconciliation
and state management Express the behavior of your code both within tests and via
various forms of documentation Who this book is for This book is for anyone who writes
JavaScript, professionally or otherwise. As this book does not relate specifically to any
particular framework or environment, no prior experience of any JavaScript web
framework is required. Some knowledge of programming is assumed to understand the
concepts covered in the book more effectively.
Looks at the principles and clean code, includes case studies showcasing the practices
of writing clean code, and contains a list of heuristics and "smells" accumulated from
the process of writing clean code.
Managing Humans is a selection of the best essays from Michael Lopp's popular
website Rands in Repose(www.randsinrepose.com). Lopp is one of the most sought-
after IT managers in Silicon Valley, and draws on his experiences at Apple, Netscape,
Symantec, and Borland. This book reveals a variety of different approaches for creating
innovative, happy development teams. It covers handling conflict, managing wildly
differing personality types, infusing innovation into insane product schedules, and
figuring out how to build lasting and useful engineering culture. The essays are biting,
Page 2/14

hilarious, and always informative.

When you have questions about C# 8.0 or .NET Core, this best-selling guide has the
answers you need. C# is a language of unusual flexibility and breadth, but with its
continual growth there’s so much more to learn. In the tradition of the O’Reilly Nutshell
guides, this thoroughly updated edition is simply the best one-volume reference to the
C# language available today. Organized around concepts and use cases, C# 8.0 in a
Nutshell provides intermediate and advanced programmers with a concise map of C#
and .NET knowledge that also plumbs significant depths. Get up to speed on C#, from
syntax and variables to advanced topics such as pointers, closures, and patterns Dig
deep into LINQ with three chapters dedicated to the topic Explore concurrency and
asynchrony, advanced threading, and parallel programming Work with .NET features,
including regular expressions, networking, serialization, spans, reflection, and
cryptography Delve into Roslyn, the modular C# compiler as a service

How do you detangle a monolithic system and migrate it to a microservice architecture?
How do you do it while maintaining business-as-usual? As a companion to Sam
Newman’s extremely popular Building Microservices, this new book details a proven
method for transitioning an existing monolithic system to a microservice architecture.
With many illustrative examples, insightful migration patterns, and a bevy of practical
advice to transition your monolith enterprise into a microservice operation, this practical
guide covers multiple scenarios and strategies for a successful migration, from initial
planning all the way through application and database decomposition. You'll learn
several tried and tested patterns and techniques that you can use as you migrate your
existing architecture. ldeal for organizations looking to transition to microservices,
rather than rebuild Helps companies determine whether to migrate, when to migrate,
and where to begin Addresses communication, integration, and the migration of legacy
systems Discusses multiple migration patterns and where they apply Provides
database migration examples, along with synchronization strategies Explores
application decomposition, including several architectural refactoring patterns Delves
into details of database decomposition, including the impact of breaking referential and
transactional integrity, new failure modes, and more

Widely considered one of the best practical guides to programming, Steve McConnell’s
original CODE COMPLETE has been helping developers write better software for more than a
decade. Now this classic book has been fully updated and revised with leading-edge
practices—and hundreds of new code samples—illustrating the art and science of software
construction. Capturing the body of knowledge available from research, academia, and
everyday commercial practice, McConnell synthesizes the most effective techniques and must-
know principles into clear, pragmatic guidance. No matter what your experience level,
development environment, or project size, this book will inform and stimulate your thinking—and
help you build the highest quality code. Discover the timeless techniques and strategies that
help you: Design for minimum complexity and maximum creativity Reap the benefits of
collaborative development Apply defensive programming techniques to reduce and flush out
errors Exploit opportunities to refactor—or evolve—code, and do it safely Use construction
practices that are right-weight for your project Debug problems quickly and effectively Resolve
critical construction issues early and correctly Build quality into the beginning, middle, and end
of your project

Software Systems Architecture is a practitioner-oriented guide to designing and implementing
effective architectures for information systems. It is both a readily accessible introduction to

Page 3/14

software architecture and an invaluable handbook of well-established best practices. It shows
why the role of the architect is central to any successful information-systems development
project, and, by presenting a set of architectural viewpoints and perspectives, provides specific
direction for improving your own and your organization's approach to software systems
architecture. With this book you will learn how to Design an architecture that reflects and
balances the different needs of its stakeholders Communicate the architecture to stakeholders
and demonstrate that it has met their requirements Focus on architecturally significant aspects
of design, including frequently overlooked areas such as performance, resilience, and location
Use scenarios and patterns to drive the creation and validation of your architecture Document
your architecture as a set of related views Use perspectives to ensure that your architecture
exhibits important qualities such as performance, scalability, and security The architectural
viewpoints and perspectives presented in the book also provide a valuable long-term reference
source for new and experienced architects alike. Whether you are an aspiring or practicing
software architect, you will find yourself referring repeatedly to the practical advice in this book
throughout the lifecycle of your projects. A supporting Web site containing further information
can be found at www.viewpoints-and-perspectives.info

While many companies ponder implementation details such as distributed processing engines
and algorithms for data analysis, this practical book takes a much wider view of big data
development, starting with initial planning and moving diligently toward execution. Authors Ted
Malaska and Jonathan Seidman guide you through the major components necessary to start,
architect, and develop successful big data projects. Everyone from CIOs and COOs to lead
architects and developers will explore a variety of big data architectures and applications, from
massive data pipelines to web-scale applications. Each chapter addresses a piece of the
software development life cycle and identifies patterns to maximize long-term success
throughout the life of your project. Start the planning process by considering the key data
project types Use guidelines to evaluate and select data management solutions Reduce risk
related to technology, your team, and vague requirements Explore system interface design
using APIs, REST, and pub/sub systems Choose the right distributed storage system for your
big data system Plan and implement metadata collections for your data architecture Use data
pipelines to ensure data integrity from source to final storage Evaluate the attributes of various
engines for processing the data you collect

Software Expert Kent Beck Presents a Catalog of Patterns Infinitely Useful for Everyday
Programming Great code doesn't just function: it clearly and consistently communicates your
intentions, allowing other programmers to understand your code, rely on it, and modify it with
confidence. But great code doesn’t just happen. It is the outcome of hundreds of small but
critical decisions programmers make every single day. Now, legendary software innovator Kent
Beck—known worldwide for creating Extreme Programming and pioneering software patterns
and test-driven development—focuses on these critical decisions, unearthing powerful
“implementation patterns” for writing programs that are simpler, clearer, better organized, and
more cost effective. Beck collects 77 patterns for handling everyday programming tasks and
writing more readable code. This new collection of patterns addresses many aspects of
development, including class, state, behavior, method, collections, frameworks, and more. He
uses diagrams, stories, examples, and essays to engage the reader as he illuminates the
patterns. You'll find proven solutions for handling everything from naming variables to
checking exceptions.

With the award-winning book Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin helped bring Agile principles to tens of thousands of Java and C++
programmers. Now .NET programmers have a definitive guide to agile methods with this
completely updated volume from Robert C. Martin and Micah Martin, Agile Principles, Patterns,

and Practices in C#. This book presents a series of case studies illustrating the fundamentals
Page 4/14

of Agile development and Agile design, and moves quickly from UML models to real C# code.
The introductory chapters lay out the basics of the agile movement, while the later chapters
show proven techniques in action. The book includes many source code examples that are
also available for download from the authors’ Web site. Readers will come away from this
book understanding Agile principles, and the fourteen practices of Extreme Programming
Spiking, splitting, velocity, and planning iterations and releases Test-driven development, test-
first design, and acceptance testing Refactoring with unit testing Pair programming Agile
design and design smells The five types of UML diagrams and how to use them effectively
Object-oriented package design and design patterns How to put all of it together for a real-
world project Whether you are a C# programmer or a Visual Basic or Java programmer
learning C#, a software development manager, or a business analyst, Agile Principles,
Patterns, and Practices in C# is the first book you should read to understand agile software
and how it applies to programming in the .NET Framework.

The latest title in Addison Wesley's world-renowned Robert C. Martin Series on better software
development, Code That Fits in Your Head offers indispensable practical advice for writing
code at a sustainable pace, and controlling the complexity that causes too many software
projects to spin out of control. Reflecting decades of experience consulting on software
projects and helping development teams succeed, Mark Seemann shares proven practices
and heuristics, supported by realistic advice. His guidance ranges from checklists to teamwork,
encapsulation to decomposition, API design to unit testing and troubleshooting. Throughout,
Seemann illuminates his insights with up-to-date code examples drawn from a start to finish
sample project. Seemann's examples are written in C##, and designed to be clear and useful
to every object-oriented enterprise developer, whether they use C#, Java, or another language.
Code That Fits in Your Head is accompanied by the complete code base for this sample
application, organized in a Git repository to facilitate further exploration of details that don't fit in
the text.

This is a practical guide for software developers, and different than other software architecture
books. Here's why: It teaches risk-driven architecting. There is no need for meticulous designs
when risks are small, nor any excuse for sloppy designs when risks threaten your success.
This book describes a way to do just enough architecture. It avoids the one-size-fits-all process
tar pit with advice on how to tune your design effort based on the risks you face. It
democratizes architecture. This book seeks to make architecture relevant to all software
developers. Developers need to understand how to use constraints as guiderails that ensure
desired outcomes, and how seemingly small changes can affect a system's properties. It
cultivates declarative knowledge. There is a difference between being able to hit a ball and
knowing why you are able to hit it, what psychologists refer to as procedural knowledge versus
declarative knowledge. This book will make you more aware of what you have been doing and
provide names for the concepts. It emphasizes the engineering. This book focuses on the
technical parts of software development and what developers do to ensure the system works
not job titles or processes. It shows you how to build models and analyze architectures so that
you can make principled design tradeoffs. It describes the techniques software designers use
to reason about medium to large sized problems and points out where you can learn
specialized techniques in more detail. It provides practical advice. Software design decisions
influence the architecture and vice versa. The approach in this book embraces drill-down/pop-
up behavior by describing models that have various levels of abstraction, from architecture to
data structure design.

Practical Software Architecture Solutions from the Legendary Robert C. Martin (“Uncle Bob”)
By applying universal rules of software architecture, you can dramatically improve developer
productivity throughout the life of any software system. Now, building upon the success of his

best-selling books Clean Code and The Clean Coder, legendary software craftsman Robert C.
Page 5/14

Martin (*Uncle Bob”) reveals those rules and helps you apply them. Martin’s Clean
Architecture doesn’t merely present options. Drawing on over a half-century of experience in
software environments of every imaginable type, Martin tells you what choices to make and
why they are critical to your success. As you've come to expect from Uncle Bob, this book is
packed with direct, no-nonsense solutions for the real challenges you'll face—the ones that will
make or break your projects. Learn what software architects need to achieve—and core
disciplines and practices for achieving it Master essential software design principles for
addressing function, component separation, and data management See how programming
paradigms impose discipline by restricting what developers can do Understand what'’s critically
important and what's merely a “detail” Implement optimal, high-level structures for web,
database, thick-client, console, and embedded applications Define appropriate boundaries and
layers, and organize components and services See why designs and architectures go wrong,
and how to prevent (or fix) these failures Clean Architecture is essential reading for every
current or aspiring software architect, systems analyst, system designer, and software
manager—and for every programmer who must execute someone else’s designs. Register
your product for convenient access to downloads, updates, and/or corrections as they become
available.

Python is currently used in many different areas. In all of these areas, experienced
professionals can find examples of inefficiency, problems, and other perils, as a result
of bad code. After reading this book, readers will understand these problems, and more
importantly, understand how to correct them.

“As an author, editor, and publisher, | never paid much attention to the
competition—except in a few cases. This is one of those cases. The UNIX System
Administration Handbook is one of the few books we ever measured ourselves
against.” —Tim O’Reilly, founder of O’Reilly Media “This edition is for those whose
systems live in the cloud or in virtualized data centers; those whose administrative work
largely takes the form of automation and configuration source code; those who
collaborate closely with developers, network engineers, compliance officers, and all the
other worker bees who inhabit the modern hive.” —Paul Vixie, Internet Hall of Fame-
recognized innovator and founder of ISC and Farsight Security “This book is fun and
functional as a desktop reference. If you use UNIX and Linux systems, you need this
book in your short-reach library. It covers a bit of the systems’ history but doesn’t
bloviate. It's just straight-forward information delivered in a colorful and memorable
fashion.” —Jason A. Nunnelley UNIX® and Linux® System Administration Handbook,
Fifth Edition, is today’s definitive guide to installing, configuring, and maintaining any
UNIX or Linux system, including systems that supply core Internet and cloud
infrastructure. Updated for new distributions and cloud environments, this
comprehensive guide covers best practices for every facet of system administration,
including storage management, network design and administration, security, web
hosting, automation, configuration management, performance analysis, virtualization,
DNS, security, and the management of IT service organizations. The authors—world-
class, hands-on technologists—offer indispensable new coverage of cloud platforms, the
DevOps philosophy, continuous deployment, containerization, monitoring, and many
other essential topics. Whatever your role in running systems and networks built on
UNIX or Linux, this conversational, well-written ¢ guide will improve your efficiency and
help solve your knottiest problems.

The software development ecosystem is constantly changing, providing a constant

Page 6/14

stream of new tools, frameworks, techniques, and paradigms. Over the past few years,
incremental developments in core engineering practices for software development have
created the foundations for rethinking how architecture changes over time, along with
ways to protect important architectural characteristics as it evolves. This practical guide
ties those parts together with a new way to think about architecture and time.
The practice of enterprise application development has benefited from the emergence
of many new enabling technologies. Multi-tiered object-oriented platforms, such as Java
and .NET, have become commonplace. These new tools and technologies are capable
of building powerful applications, but they are not easily implemented. Common failures
in enterprise applications often occur because their developers do not understand the
architectural lessons that experienced object developers have learned. Patterns of
Enterprise Application Architecture is written in direct response to the stiff challenges
that face enterprise application developers. The author, noted object-oriented designer
Martin Fowler, noticed that despite changes in technology--from Smalltalk to CORBA to
Java to .NET--the same basic design ideas can be adapted and applied to solve
common problems. With the help of an expert group of contributors, Martin distills over
forty recurring solutions into patterns. The result is an indispensable handbook of
solutions that are applicable to any enterprise application platform. This book is actually
two books in one. The first section is a short tutorial on developing enterprise
applications, which you can read from start to finish to understand the scope of the
book's lessons. The next section, the bulk of the book, is a detailed reference to the
patterns themselves. Each pattern provides usage and implementation information, as
well as detailed code examples in Java or C#. The entire book is also richly illustrated
with UML diagrams to further explain the concepts. Armed with this book, you will have
the knowledge necessary to make important architectural decisions about building an
enterprise application and the proven patterns for use when building them. The topics
covered include - Dividing an enterprise application into layers - The major approaches
to organizing business logic - An in-depth treatment of mapping between objects and
relational databases - Using Model-View-Controller to organize a Web presentation -
Handling concurrency for data that spans multiple transactions - Designing distributed
object interfaces
Presents practical advice on the disciplines, techniques, tools, and practices of
computer programming and how to approach software development with a sense of
pride, honor, and self-respect.
Designing Software Architectures will teach you how to design any software
architecture in a systematic, predictable, repeatable, and cost-effective way. This book
introduces a practical methodology for architecture design that any professional
software engineer can use, provides structured methods supported by reusable chunks
of design knowledge, and includes rich case studies that demonstrate how to use the
methods. Using realistic examples, you’ll master the powerful new version of the
proven Attribute-Driven Design (ADD) 3.0 method and will learn how to use it to
address key drivers, including quality attributes, such as modifiability, usability, and
availability, along with functional requirements and architectural concerns. Drawing on
their extensive experience, Humberto Cervantes and Rick Kazman guide you through
crafting practical designs that support the full software life cycle, from requirements to
maintenance and evolution. You'll learn how to successfully integrate design in your
Page 7/14

organizational context, and how to design systems that will be built with agile methods.
Comprehensive coverage includes Understanding what architecture design involves,
and where it fits in the full software development life cycle Mastering core design
concepts, principles, and processes Understanding how to perform the steps of the
ADD method Scaling design and analysis up or down, including design for pre-sale
processes or lightweight architecture reviews Recognizing and optimizing critical
relationships between analysis and design Utilizing proven, reusable design primitives
and adapting them to specific problems and contexts Solving design problems in new
domains, such as cloud, mobile, or big data
The Unified Modeling Language has become the industry standard for the expression
of software designs. The Java programming language continues to grow in popularity
as the language of choice for the serious application developer. Using UML and Java
together would appear to be a natural marriage, one that can produce considerable
benefit. However, there are nuances that the seasoned developer needs to keep in
mind when using UML and Java together. Software expert Robert Martin presents a
concise guide, with numerous examples, that will help the programmer leverage the
power of both development concepts. The author ignores features of UML that do not
apply to java programmers, saving the reader time and effort. He provides direct
guidance and points the reader to real-world usage scenarios. The overall practical
approach of this book brings key information related to Java to the many presentations.
The result is an highly practical guide to using the UML with Java.
There are many programmers. Real software architects, on the other hand, are rare
and, therefore, particularly popular in the market. The Clean Software Architect book is
the perfect introduction to this new level of programming.Leading companies and
employers are always looking for clean software architects to generate a clearly high-
quality code. After all, it is easily expandable, which increases productivity in the long
term, shortens development time, and ensures perfect quality. The Beginners Guide To
Clean Architecture is, therefore, a primary knowledge-intensive book to learn about the
clean software architect. After a quick theoretical introduction, the book switches
directly to practical applications. We specifically look at important object-oriented design
concepts and principles.In this book, you will learn: How to become a good software
architect from a new programmer. Learn to model with UML diagrams.Learn and use
SOLID principle.sRecognize code segments that violate SOLID principles and improve
them if necessary.Learn component design principles.Recognize modules that violate
component design principles and adapt them if necessary.Learn basic, object-oriented
design principles and put them into practice.Learn the design patterns most commonly
used in practice and use them in existing or new software projects.Object-oriented
software architecture learn and use principles.A better understanding of the good
design and best practice for design.Design of clean and flexible software
architecture.Facilitate familiarization time for new employees thanks to clean
architecture.Increase productivity with easily expandable architecture.As you explore
the book, you'll learn about clean, high-quality code. This book focuses on lessons
based on the SOLID principles and their interactions. Basic questions, such as which
classes belong in the same module? How do the modules interact with each other?
Where are the boundaries between the modules? And what are the interfaces between
the individual modules?This book is for new and junior software developers and

Page 8/14

programmers with basic programming knowledge. So go ahead and hop right in! Now is
your chance to develop your skills and set yourself apart from the others.

A Comprehensive Process for Defining Software Architectures That Work A good software
architecture is the foundation of any successful software system. Effective architecting requires
a clear understanding of organizational roles, artifacts, activities performed, and the optimal
sequence for performing those activities. With The Process of Software Architecting , Peter
Eeles and Peter Cripps provide guidance on these challenges by covering all aspects of
architecting a software system, introducing best-practice techniques that apply in every
environment, whether based on Java EE, Microsoft .NET, or other technologies. Eeles and
Cripps first illuminate concepts related to software architecture, including architecture
documentation and reusable assets. Next, they present an accessible, task-focused guided
tour through a typical project, focusing on the architect’s role, with common issues illuminated
and addressed throughout. Finally, they conclude with a set of best practices that can be
applied to today’s most complex systems. You will come away from this book understanding
The role of the architect in a typical software development project How to document a software
architecture to satisfy the needs of different stakeholders The applicability of reusable assets in
the process of architecting The role of the architect with respect to requirements definition The
derivation of an architecture based on a set of requirements The relevance of architecting in
creating complex systems The Process of Software Architecting will be an indispensable
resource for every working and aspiring software architect—and for every project manager and
other software professional who needs to understand how architecture influences their work.
Getting Architecture Just Right: Detailed Practical Guidance for Architecting Any Real-World IT
Project To build effective architectures, software architects must tread a fine line between
precision and ambiguity (a.k.abig animal pictures). This is difficult but crucial: Failure to
achieve this balance often leads directly to poor systems design and implementation. Now,
pioneering IBM Distinguished Engineer and Chief Technology Officer Tilak Mitra offers the first
complete guide to developing end-to-end solution architectures that are “just
enough”--identifying and capturing the most important artifacts, without over-engineering or
excessive documentation, and providing a practical approach to consistent and repeated
success in defining software architectures. Practical Software Architecture provides detailed
prescriptive and pragmatic guidance for architecting any real-world IT project, regardless of
system, methodology, or environment. Mitra specifically identifies the artifacts that require
emphasis and shows how to communicate evolving solutions with stakeholders, bridging the
gap between architecture and implementation.

Gain insight into how hexagonal architecture can help to keep the cost of development low
over the complete lifetime of an application Key Features Explore ways to make your software
flexible, extensible, and adaptable Learn new concepts that you can easily blend with your own
software development style Develop the mindset of building maintainable solutions instead of
taking shortcuts Book Description We would all like to build software architecture that yields
adaptable and flexible software with low development costs. But, unreasonable deadlines and
shortcuts make it very hard to create such an architecture. Get Your Hands Dirty on Clean
Architecture starts with a discussion about the conventional layered architecture style and its
disadvantages. It also talks about the advantages of the domain-centric architecture styles of
Robert C. Martin's Clean Architecture and Alistair Cockburn's Hexagonal Architecture. Then,
the book dives into hands-on chapters that show you how to manifest a hexagonal architecture
in actual code. You'll learn in detail about different mapping strategies between the layers of a
hexagonal architecture and see how to assemble the architecture elements into an application.
The later chapters demonstrate how to enforce architecture boundaries. You'll also learn what
shortcuts produce what types of technical debt and how, sometimes, it is a good idea to

willingly take on those debts. After reading this book, you'll have all the knowledge you need to
Page 9/14

create applications using the hexagonal architecture style of web development. What you will
learn ldentify potential shortcomings of using a layered architecture Apply methods to enforce
architecture boundaries Find out how potential shortcuts can affect the software architecture
Produce arguments for when to use which style of architecture Structure your code according
to the architecture Apply various types of tests that will cover each element of the architecture
Who this book is for This book is for you if you care about the architecture of the software you
are building. To get the most out of this book, you must have some experience with web
development. The code examples in this book are in Java. If you are not a Java programmer
but can read object-oriented code in other languages, you will be fine. In the few places where
Java or framework specifics are needed, they are thoroughly explained.

As Python continues to grow in popularity, projects are becoming larger and more complex.
Many Python developers are now taking an interest in high-level software design patterns such
as hexagonal/clean architecture, event-driven architecture, and the strategic patterns
prescribed by domain-driven design (DDD). But translating those patterns into Python isn’t
always straightforward. With this hands-on guide, Harry Percival and Bob Gregory from
MADE.com introduce proven architectural design patterns to help Python developers manage
application complexity—and get the most value out of their test suites. Each pattern is illustrated
with concrete examples in beautiful, idiomatic Python, avoiding some of the verbosity of Java
and C# syntax. Patterns include: Dependency inversion and its links to ports and adapters
(hexagonal/clean architecture) Domain-driven design’s distinction between entities, value
objects, and aggregates Repository and Unit of Work patterns for persistent storage Events,
commands, and the message bus Command-query responsibility segregation (CQRS) Event-
driven architecture and reactive microservices

Radically improve your testing practice and software quality with new testing styles, good
patterns, and reliable automation. Key Features A practical and results-driven approach to unit
testing Refine your existing unit tests by implementing modern best practices Learn the four
pillars of a good unit test Safely automate your testing process to save time and money Spot
which tests need refactoring, and which need to be deleted entirely Purchase of the print book
includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The
Book Great testing practices maximize your project quality and delivery speed by identifying
bad code early in the development process. Wrong tests will break your code, multiply bugs,
and increase time and costs. You owe it to yourself—and your projects—to learn how to do
excellent unit testing. Unit Testing Principles, Patterns and Practices teaches you to design
and write tests that target key areas of your code including the domain model. In this clearly
written guide, you learn to develop professional-quality tests and test suites and integrate
testing throughout the application life cycle. As you adopt a testing mindset, you'll be amazed
at how better tests cause you to write better code. What You Will Learn Universal guidelines to
assess any unit test Testing to identify and avoid anti-patterns Refactoring tests along with the
production code Using integration tests to verify the whole system This Book Is Written For For
readers who know the basics of unit testing. Examples are written in C# and can easily be
applied to any language. About the Author Vladimir Khorikov is an author, blogger, and
Microsoft MVP. He has mentored numerous teams on the ins and outs of unit testing. Table of
Contents: PART 1 THE BIGGER PICTURE 1 | The goal of unit testing 2 ; What is a unit test? 3
I The anatomy of a unit test PART 2 MAKING YOUR TESTS WORK FOR YOU 4 | The four
pillars of a good unit test 5 | Mocks and test fragility 6 | Styles of unit testing 7 | Refactoring
toward valuable unit tests PART 3 INTEGRATION TESTING 8 | Why integration testing? 9 |
Mocking best practices 10 | Testing the database PART 4 UNIT TESTING ANTI-PATTERNS
11 | Unit testing anti-patterns

More C++ Gems picks up where the first book left off, presenting tips, tricks, proven strategies,

easy-to-follow techniques, and usable source code.
Page 10/14

This book explores in detail everything there is to know about building Clean Software
Architecture. Usually, when we talk about Software Architecture, what comes to mind is a good
working system. We concentrate more on the function of the software than the structure. The
structure of the system is treated as an inconsequential part of the software development
process. In relation to this, business managers and stakeholders believe that clean software is
working software. The truth is that a system works well does not mean it is a clean one. In this
book, Software Architecture is explored from its two most significant qualities: structure and
behavior. The structure of the software plays an important role in software development; it
determines the behavior of the software. The structure covers modules, functions, classes,
services, and boundaries and encompasses the system itself. But most times, developers
often make the mistake of concentrating more on the behavior of the system while the
structure comes last. This action has contributed to most of the problems we have in software
development today. This book explains why the structure of the software should come before
the behavior. It provides a step by step guide to creating flexible software that will be
susceptible to change when the need be. It looks at the various principles guiding software
design. These principles range from dependencies, component coupling, component cohesion,
to the classes of elements contained in a software and how these elements can be separated
from each other. The principles serve as a guideline to creating clean software. Explanation of
the difference between a working Architecture and a Clean Architecture is given. Clean
Software runs smoothly and has a longer lifespan than working software. The book guides
programmers on the foundation and the building blocks to creating Clean Software. Also,
developers are guided on how to make their system obey the rules of testability. Clean
Software is testable software.

Test-Driven Development (TDD) is at the heart of low-defect agile software development,
enabling incremental development and emergent design without degrading quality. By allowing
software teams to create comprehensive regression tests that immediately pinpoint tiny errors,
it gives them confidence to enhance functionality with incredible speed. Essential Test-Driven
Development will help you discover how TDD helps developers take back the joy of software
development, as you glimpse of the future of TDD and software development as a profession.
Leading TDD coach and instructor Rob Myers shares his experiences, suggestions, and
stories, plus focused and fun self-directed Java, C#, C++, and JavaScript lab work from his
acclaimed TDD course. Throughout, this guide reflects the author's unsurpassed experience
practicing TDD on real production code and helping hundreds of teams adopt TDD practices.
Myers addresses both human motivations and technical challenges, and stresses benefits to
individual programmers, not just companies. He also offers exceptional coverage of massive
refactoring and legacy code, reflecting the actual realities most developers face."

In Clean Craftsmanship , the legendary Robert C. Martin ("Uncle Bob") has written
every programmer's definitive guide to working well. Martin brings together the
disciplines, standards, and ethics you need to deliver robust, effective code quickly and
productively, and be proud of all the software you write -- every single day. Martin, the
best-selling author of The Clean Coder , begins with a pragmatic, technical, and
prescriptive guide to five foundational disciplines of software craftsmanship: test-driven
development, refactoring, simple design, collaborative programming (pairing), and
acceptance tests. Next, he moves up to standards -- outlining the baseline expectations
the world has of software developers, illuminating how those often differ from their own
perspectives, and helping you repair the mismatch. Finally, he turns to the ethics of the
programming profession, describing ten fundamental promises all software developers
should make to their colleagues, their users, and above all, themselves . With Martin's

guidance and advice, you can consistently write code that builds trust instead of
Page 11/14

undermining it -- trust among your users and throughout a society that depends on
software for its very survival.
Right Your Software and Transform Your Career Righting Software presents the
proven, structured, and highly engineered approach to software design that renowned
architect Juval Léwy has practiced and taught around the world. Although companies of
every kind have successfully implemented his original design ideas across hundreds of
systems, these insights have never before appeared in print. Based on first principles in
software engineering and a comprehensive set of matching tools and techniques,
Lowy’s methodology integrates system design and project design. First, he describes
the primary area where many software architects fail and shows how to decompose a
system into smaller building blocks or services, based on volatility. Next, he shows how
to flow an effective project design from the system design; how to accurately calculate
the project duration, cost, and risk; and how to devise multiple execution options. The
method and principles in Righting Software apply regardless of your project and
company size, technology, platform, or industry. Lowy starts the reader on a journey
that addresses the critical challenges of software development today by righting
software systems and projects as well as careers—and possibly the software industry as
a whole. Software professionals, architects, project leads, or managers at any stage of
their career will benefit greatly from this book, which provides guidance and knowledge
that would otherwise take decades and many projects to acquire. Register your book
for convenient access to downloads, updates, and/or corrections as they become
available. See inside book for details.
Software engineering and computer science students need a resource that explains
how to apply design patterns at the enterprise level, allowing them to design and
implement systems of high stability and quality. Software Architecture Design Patterns
in Java is a detailed explanation of how to apply design patterns and develop software
architectures. It provides in-depth examples in Java, and guides students by detailing
when, why, and how to use specific patterns. This textbook presents 42 design
patterns, including 23 GoF patterns. Categories include: Basic, Creational, Collectional,
Structural, Behavioral, and Concurrency, with multiple examples for each. The
discussion of each pattern includes an example implemented in Java. The source code
for all examples is found on a companion Web site. The author explains the content so
that it is easy to understand, and each pattern discussion includes Practice Questions
to aid instructors. The textbook concludes with a case study that pulls several patterns
together to demonstrate how patterns are not applied in isolation, but collaborate within
domains to solve complicated problems.
For senior/graduate level courses on Object Oriented Design using C++, and the Booch
(BC) - OOD bhook. A practical, problem-solving approach to the fundamental concepts
of Object Oriented Design and their application using C++. This book is written for the
"engineer in the trenches". It is a serious guide for practitioners of Object-Oriented
design. The style is narrative, and accessible for the beginner, and yet the topics are
covered in enough depth to be relevant to the consumate designer. The principles of
OOD explained, one by one, and then demonstrated with numerous examples and
case studies.
Extreme Programming is the most exciting revolution to hit the software engineering
industry in the last decade. But what exactly is XP? And how do you XP? Simply put,
Page 12/14

XP is about playing to win. If you are serious about becoming an agile organization,
decreasing your time to market, keeping your development team happy, and improving
the overall quality of your software, then XP is for you. Extreme Programming in
Practice provides a candid, refreshing, insiders view of how an XP project works. The
artifacts presented in this book are real, the user stories are real, and the anecdotes are
real. The book represents all-access, uncensored XP. The authors have chosen
example over explanation, so that you can personalize the tenets of XP and put them
into practice on your next development project. The book is supported with sample
code and test examples. You can learn how to emphasize planning in your project;
deliver multiple iterations of your project (each with increasing business value); gather
customer feedback as you build; and test the integrity of your code without halting your
development efforts. The authors also provide a handy summary of more than a dozen
lessons learned i
Agile Values and Principles for a New Generation “In the journey to all things Agile,
Uncle Bob has been there, done that, and has the both the t-shirt and the scars to show
for it. This delightful book is part history, part personal stories, and all wisdom. If you
want to understand what Agile is and how it came to be, this is the book for you.”
—Grady Booch “Bob’s frustration colors every sentence of Clean Agile, but it's a
justified frustration. What is in the world of Agile development is nothing compared to
what could be. This book is Bob’s perspective on what to focus on to get to that ‘what
could be.” And he’s been there, so it's worth listening.” —Kent Beck “It's good to read
Uncle Bob’s take on Agile. Whether just beginning, or a seasoned Agilista, you would
do well to read this book. | agree with almost all of it. It's just some of the parts make
me realize my own shortcomings, dammit. It made me double-check our code coverage
(85.09%).” —Jon Kern Nearly twenty years after the Agile Manifesto was first presented,
the legendary Robert C. Martin (“Uncle Bob”) reintroduces Agile values and principles
for a new generation—programmers and nonprogrammers alike. Martin, author of Clean
Code and other highly influential software development guides, was there at Agile’s
founding. Now, in Clean Agile: Back to Basics, he strips away misunderstandings and
distractions that over the years have made it harder to use Agile than was originally
intended. Martin describes what Agile is in no uncertain terms: a small discipline that
helps small teams manage small projects . . . with huge implications because every big
project is comprised of many small projects. Drawing on his fifty years’ experience with
projects of every conceivable type, he shows how Agile can help you bring true
professionalism to software development. Get back to the basics—what Agile is, was,
and should always be Understand the origins, and proper practice, of SCRUM Master
essential business-facing Agile practices, from small releases and acceptance tests to
whole-team communication Explore Agile team members’ relationships with each
other, and with their product Rediscover indispensable Agile technical practices: TDD,
refactoring, simple design, and pair programming Understand the central roles values
and craftsmanship play in your Agile team’s success If you want Agile’s true benefits,
there are no shortcuts: You need to do Agile right. Clean Agile: Back to Basics will
show you how, whether you're a developer, tester, manager, project manager, or
customer. Register your book for convenient access to downloads, updates, and/or
corrections as they become available. See inside book for details.
"After many decades - and even more methodologies - software projects are still failing.
Page 13/14

Why? Managers see software development as a production line. Companies don't
know how to manage software projects and hire good developers. Many developers still
behave like factory workers, providing terrible service to their employers and clients.
Agile was a big step forward, but not enough. What's missing? The right mindset - for
both developers and their employers. As developers worldwide are recognizing, the
right mindset is craftsmanship ... Mancuso explains what craftsmanship means to the
developer and his or her organization, and shows how to live it every day in your real-
world development environment. Mancuso shows how software craftsmanship fits with
and helps you improve upon best-practice technical disciplines such as agile and lean,
taking all your development projects to the next level. You'll learn how to change the
disastrous perception that software developers are the same as factory workers, and
that software projects can be run like factories. By placing greater professionalism,
technical excellence, and customer satisfaction at the heart of what you do, you won't
just deliver more value to everyone involved: you'll be happier and more fulfilled doing
it"--Publisher's description.

Salary surveys worldwide regularly place software architect in the top 10 best jobs, yet
no real guide exists to help developers become architects. Until now. This book
provides the first comprehensive overview of software architecture’s many aspects.
Aspiring and existing architects alike will examine architectural characteristics,
architectural patterns, component determination, diagramming and presenting
architecture, evolutionary architecture, and many other topics. Mark Richards and Neal
Ford—hands-on practitioners who have taught software architecture classes
professionally for years—focus on architecture principles that apply across all technology
stacks. You'll explore software architecture in a modern light, taking into account all the
innovations of the past decade. This book examines: Architecture patterns: The
technical basis for many architectural decisions Components: ldentification, coupling,
cohesion, partitioning, and granularity Soft skills: Effective team management,
meetings, negotiation, presentations, and more Modernity: Engineering practices and
operational approaches that have changed radically in the past few years Architecture
as an engineering discipline: Repeatable results, metrics, and concrete valuations that
add rigor to software architecture

Copyright: 5d7f2679e7fa668e7aa0311ac5lab4dc

Page 14/14

https://www.treca.org/
http://www.treca.org

