Boundary Representation Modelling Techniques

structures.

This textbook presents the basic principles for the use and design of computer graphics systems, as well as illustrates algorithm implementations and graphics applications. The book begins with an introduction to the subject and goes on to discuss various graphic techniques with the help of several examples and neatly drawn figures. It elaborates on methods for modelling and performing geometric transformations and methods for obtaining views in both two and three dimensions. With a programmingoriented approach, the book also describes all the processes used in computer graphics along with easy-to-read algorithms, which will enable students to develop their own software skills. KEY FEATURES: Provides necessary mathematics and fundamentals of C programming used for computer graphics. Demonstrates the implementation of graphics algorithms using programming examples developed in C. Gives a large number of worked-out examples to help students understand finer details of theory. Presents chapter-end-exercises including multiple choice questions, fill in the blanks, and true/false type questions with answers to quiz students on key learning points. This book is primarily designed for the students of computer science and engineering, information technology, as well as students of MSc (computer science), BCA and MCA. It will be also useful to undergraduate students of mechanical, production, automobile, electronics and electrical and other engineering disciplines. The book gives a systematic and detailed description of a new integrated product and process development approach for sheet metal manufacturing. Special attention is given to manufacturing that unites multidisciplinary competences of product design, material science, and production engineering, as well as mathematical optimization and computer based information technology. The case study of integral sheet metal structures is used by the authors to introduce the results related to the recent manufacturing technologies of linear flow splitting, bend splitting, and corresponding integrated process chains for sheet metal

This book presents the latest research developments in geoinformation science, which includes all the sub-disciplines of the field, such as: geomatic engineering, GIS, remote sensing, digital photogrammetry, digital cartography, etc.

Realistically representing our three-dimensional world has been the subject of many (philosophical) discussions since ancient times. While the recognition of the globular shape of the Earth goes back to Pythagoras' statements of the sixth century B. C., the two-dimensional, circular depiction of the Earth's surface has remained prevailing and also dominated the art of painting until the late Middle Ages. Given the immature technological means, objects on the Earth's surface were often represented in academic and technical disciplines by two-dimensional cross-sections oriented along combinations of three mutually perpendicular directions. As soon as computer science evolved, scientists have steadily been improving the three-dimensional representation of the Earth and developed techniques to analyze the many natural processes and phenomena taking part on its surface. Both computer aided design (CAD) and geographical information systems (GIS) have been developed in parallel during the last three decades. While the former concentrates more on the detailed design of geometric models of object shapes, the latter emphasizes the topological relationships between geographical objects and analysis of spatial patterns. Nonetheless, this distinction has become increasingly blurred and both approaches have been integrated into commercial software packages. In recent years, an active line of inquiry has emerged along the junctures of CAD and GIS, viz. 3D geoinformation science. Studies along this line have recently made significant inroads in terms of 3D modeling and data acquisition.

Boundary Representation Modelling TechniquesSpringer Science & Business Media

This handbook covers computational fluid dynamics from fundamentals to applications. This text provides a well documented critical survey of numerical methods for fluid mechanics, and gives a state-of-the-art description of computational fluid mechanics, considering numerical analysis, computer technology, and visualization tools. The chapters in this book are invaluable tools for reaching a deeper understanding of the problems associated with the calculation of fluid motion in various situations: inviscid and viscous, incompressible and compressible, steady and unsteady, laminar and turbulent flows, as well as simple and complex geometries. Each chapter includes a related bibliography Covers fundamentals and applications Provides a deeper understanding of the problems associated with the calculation of fluid motion

This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.

Primarily intended as a textbook for the undergraduate students of aeronautical, automobile, civil, industrial, mechanical, mechatronics and production, it provides a comprehensive coverage of all the technical aspects related to CAD/CAM. Organized in 26 chapters, the textbook covers interactive computer graphics, CAD, finite element analysis, numerical control, computer numerical control, manual part programming, computer-aided part programming, direct numerical control, adaptive control systems, group technology, computer-aided process planning, computer-aided planning of resources for manufacturing, computer-aided quality control, industrial robots, flexible manufacturing systems, cellular manufacturing, lean manufacturing and computer integrated manufacturing. Each chapter begins with objectives and ends with descriptive and multiple-choice questions. Besides students, this book would be of immense value to practicing engineers and professionals who are interested in the CAD/CAM technology and its applications to design and manufacturing. KEY FEATURES: Many innovative illustrations Case studies Question bank at the end of each chapter Good number of worked out examples Extensive and carefully selected references Boundary representation is the principal solid modelling method used in modern CAD/CAM systems. There have been a long series of developments on which currently available systems are based, full details of which are only partially known. Ian Stroud's thorough coverage of these developments puts this technology in perspective and provides the most complete presentation of boundary representation solid modelling yet published.

The impact of the technology of Computer-Aided Design and Manufacturing in automobile engineering, marine engineering and aerospace engineering has been tremendous. Using computers in manufacturing is receiving particular prominence as industries seek to improve

product quality, increase productivity and to reduce inventory costs. Therefore, the emphasis has been attributed to the subject of CAD and its integration with CAM. Designed as a textbook for the undergraduate students of mechanical engineering, production engineering and industrial engineering, it provides a description of both the hardware and software of CAD/CAM systems. The Coverage Includes? Principles of interactive computer graphics? Wireframe, surface and solid modelling? Finite element modelling and analysis? NC part programming and computer-aided part programming? Machine vision systems? Robot technology and automated guided vehicles? Flexible manufacturing systems? Computer integrated manufacturing? Artificial intelligence and expert systems? Communication systems in manufacturing PEDAGOGICAL FEATURES? CNC program examples and APT program examples? Review questions at the end of every chapter? A comprehensive Glossary? A Question Bank at the end of the chapters

Computer Aided techniques, Applications, Systems and tools for Geometric Modeling are extremely useful in a number of academic and industrial settings. Specifically, Computer Aided Geometric Modeling (CAGM) plays a significant role in the construction of - signing and manufacturing of various objects. In addition to its cri- cal importance in the traditional fields of automobile and aircraft manufacturing, shipbuilding, and general product design, more - cently, the CAGM methods have also proven to be indispensable in a variety of modern industries, including computer vision, robotics, medical imaging, visualization, and even media. This book aims to provide a valuable source, which focuses on - terdisciplinary methods and affiliate research in the area. It aims to provide the user community with a variety of Geometric Modeling techniques, Applications, systems and tools necessary for various real life problems in the areas such as: Font Design Medical Visualization Scientific Data Visualization Archaeology Toon Rendering Virtual Reality Body Simulation It also aims to collect and disseminate information in various dis- plines including: Curve and Surface Fitting Geometric Algorithms Scientific Visualization Shape Abstraction and Modeling Intelligent CAD Systems Computational Geometry Solid Modeling v Shape Analysis and Description Industrial Applications The major goal of this book is to stimulate views and provide a source where researchers and practitioners can find the latest dev- opments in the field of Geometric Modeling.

With the increasing complexity and dynamism in today's machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of research in dynamic thermal analysis and simulation, and the second section presents an in-depth treatment of relevant methodology and algorithms, leading to better understanding of a machine in real situation. The book is a collection of novel ideas, taking into account the need for presenting intellectual challenges while appealing to a broad readership, including academic researchers, practicing engineers and managers, and graduate students. Given the essential role of modern machines in factory automation and quality assurance, a book dedicated to the topic of dynamic thermal analysis, and its practical applications to machine design would be beneficial to readers of all design and manufacturing sectors, from machine design to automotive engineering, in better understanding the present challenges and solutions, as well as future research directions in this important area. This book offers a comprehensive survey of computer methods for engineers that know the importance of the future applications of these techniques but can not understand them. Typically, design and production engineers can find books for specialists but they need one that helps them to understand the mystic world of advanced computer aided engineering activitites. This book is intended to fill this gap. Mechanical engineers will find basic theory and the value of competitive computer-aided engineering methods in the proposed book. The book will be written in a style free of computer specialists' jargon. The topic of the book is computer methodology for engineers, including conceptual design, detailed design, styling, modeling, analysis, simulation, manufacturing planning, 3D graphic visualization. The aspect is of the engineer who is in dialog connection with computer procedures and is working in a human-computer system where a group of engineers collaborates using an advanced concurrent engineering environment. The book will include chapters on: computing for engineering; computer representation; computing methods: creating computer representations; application of computer representations; engineering activities in the global computer environment; and opinions of some potentials. The audience for this book consists of engineers, who must be familiar with computer methods and should be able to apply them in their work, as well as students who are not involved in computer-related courses but need an understanding of the world of computer-aided engineering to solve engineering tasks. Potential readers may be any individuals who need to understand computer-aided engineering methods, especially engineering modeling. *Written by engineering professors who are also IT professionals, this book marries two points-of-view to provide a unique perspective *Covers the full spectrum of computer-aided engineering, from mathematics to graphics *Written purposefully in languae that is IT jargon-free, so that engineers will not get lost in tangled acronyms

This book is a collection of the best papers originally presented as state-of-the-art reports or tutorials at the Eurographics '91 conference in Vienna. A choice has been made giving priority to timeless information. Another goal was to cover all aspects of computer graphics - except hardware - as completely as possible from modelling to advanced visualization and communication. The ten contributions by internationally renowned experts fulfil this goal perfectly. Some important problem areas treated from different viewpoints thus enhancing and deepening the reader's perspective.

This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

Plastics have become increasingly important in the products used in our society, ranging from housing to packaging, transportation, business machines and especially in medicine and health products. Designing plastic parts for this wide range of uses has become a major activity for designers, architects, engineers, and others who are concerned with product development. Because plastics are unique materials with a broad range of proper ties they are adaptable to a variety of uses. The uniqueness of plastics stems from their physical characteristics which are as different from metals, glasses, and ceramics as these materials are different from each other. One major concern is the design of structures to take loads. Metals as well as the other materials are assumed to respond elastically and to recover completely their original shape after the load is removed. Based on this simple fact, extensive litera ture on applied mechanics of materials has been developed to enable designers to predict accurately the performance of structures under load. Many engineers depend on such texts as Timoshenko's Strength of Materials as a guide to the performance of structures. Using this as a guide, generations of engineers have designed economical and safe structural parts. Unfortunately, these design principles must be modified when designing with plastics since they do not respond elastically to stress and undergo permanent deformation with sus tained loading.

Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good

understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space – a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while Solid Works or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free form surface modeling; modeling of product assemblies following bottom-up and top-down principles; and the presentation of a product in accordance with the rules of technical documentation. This book, which includes more than 500 figures, will be ideal for students wishing to gain a sound grasp of space modeling techniques. Academics and professionals will find it to be an excellent teaching and research aid, and an easy-to-use guide.

In recent years 3D geo-information has become an important research area due to the increased complexity of tasks in many geo-scientific applications, such as sustainable urban planning and development, civil engineering, risk and disaster management and environmental monitoring. Moreover, a paradigm of cross-application merging and integrating of 3D data is observed. The problems and challenges facing today's 3D software, generally application-oriented, focus almost exclusively on 3D data transportability issues – the ability to use data originally developed in one modelling/visualisation system in other and vice versa. Tools for elaborated 3D analysis, simulation and prediction are either missing or, when available, dedicated to specific tasks. In order to respond to this increased demand, a new type of system has to be developed. A fully developed 3D geo-information system should be able to manage 3D geometry and topology, to integrate 3D geometry and thematic information, to analyze both spatial and topological relationships, and to present the data in a suitable form. In addition to the simple geometry types like point line and polygon, a large variety of parametric representations, freeform curves and surfaces or sweep shapes have to be supported. Approaches for seamless conversion between 3D raster and 3D vector representations should be available, they should allow analysis of a representation most suitable for a specific application.

Heterogeneous object modelling is a new and quickly developing research area. This book is one of the first attempts to systematically cover the most relevant themes and problems of this new and challenging subject area. It is a collection of invited papers and papers co-authored by the editors. Each chapter presents either new research results or a survey on the following topics: Formal models and abstractions of heterogeneous objects including geometric, topological, discrete and continuous models, operations forming special algebras and conversions between different model types. Data structures and algorithms for representing, modifying and computing with heterogeneous objects. Computational techniques for the design, reconstruction, optimization, analysis and simulation of heterogeneous objects that incorporate information on shape, material and physical behavior using a common framework. Applications of heterogeneous object modelling in engineering and scientific areas, including geophysical, biomedical, artistic and multi-material fabrication applications. Over the past few decades, the radiological science community has developed and applied numerous models of the human body for radiation protection, diagnostic imaging, and nuclear medicine therapy. The Handbook of Anatomical Models for Radiation Dosimetry provides a comprehensive review of the development and application of these computational models, known as "phantoms." An ambitious and unparalleled project, this pioneering work is the result of several years of planning and preparation involving 64 authors from across the world. It brings together recommendations and information sanctioned by the International Commission on Radiological Protection (ICRP) and documents 40 years of history and the progress of those involved with cutting-edge work with Monte Carlo Codes and radiation protection dosimetry. This volume was in part spurred on by the ICRP's key decision to adopt voxelized computational phantoms as standards for radiation protection purposes. It is an invaluable reference for those working in that area as well as those employing or developing anatomical models for a a number of clinical applications. Assembling the work of nearly all major phantom developers around the world, this volume examines: The history of the research and development in computational phantoms Detailed accounts for each of the wellknown phantoms, including the MIRD-5, GSF Voxel Family Phantoms, NCAT, UF Hybrid Pediatric Phantoms, VIP-Man, and the latest ICRP Reference Phantoms Physical phantoms for experimental radiation dosimetry The smallest voxel size (0.2 mm), phantoms developed from the Chinese Visible Human Project Applications for radiation protection dosimetry involving environmental, nuclear power plant, and internal contamination exposures Medical applications, including nuclear medicine therapy, CT examinations, x-ray radiological image optimization, nuclear medicine imaging, external photon and proton treatments, and management of respiration in modern image-guided radiation treatment Patient-specific phantoms used for radiation treatment planning involving two Monte Carlo code systems: GEANT4 and EGS Future needs for research and development Related data sets are available for download on the authors' website. The breadth and depth of this work enables readers to obtain a unique sense of the complete scientific process in computational phantom development, from the conception of an idea, to the identification of original anatomical data, to solutions of various computing problems, and finally, to the ownership and sharing of results in this groundbreaking field that holds so much promise.

Solid Modelling and CAD Systems gives users an insight into the methods and problems associated with CAD systems. It acts as a bridge between users who learn interfaces without understanding how they work and developers who create systems without understanding the needs of the users. The main feature of Solid Modelling and CAD Systems is a logical analysis of the techniques and basic solid modelling methods used in modern CAD systems. The book goes on to describe, among other subjects: two-dimensional shape definition methods, the command interface and graphics, databases and data exchange, early-phase design, and command files and command structures. Reading Solid Modelling and CAD Systems will help users understand the limitations of the techniques they are using and will enable practitioners to use CAD systems more efficiently. It is a valuable tool for designers, as well as for advanced undergraduate and postgraduate students. The exercises it contains allow readers to try out different aspects of the subject matter and the book also includes projects that can be used for teaching purposes.

This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.

Documents the conference with 57 papers. Among the topics are a multicriteria decision making approach to concurrent engineering in

Documents the conference with 57 papers. Among the topics are a multicriteria decision making approach to concurrent engineering in product design, a morphological heuristic for scheduling, multiple-viewpoint computer-aided design models for automotive body-in-white design, product development pract

Reiner Anderl The Advanced Modelling part of the CAD*I project aimed at the development of a new generation of modelling techniques as a basic functionality of future CAD/CAM systems. The methodology and concepts for advanced modelling techniques, their availability in the communication interface of a CAD/CAM system and their influence on internal interfaces in the software architecture of a CAD/CAM system are fundamental results of advanced modelling work. These results form the basis for the development of a new generation of CAD/CAM systems which are called product modelling systems. CAD/CAM systems today mainly support the geometric description of a technical part or its description as a technical drawing. Advanced geometric modelling capabilities deal with parametric design functions embedded into CAD/CAM systems. However, development strategies for future CAD/CAM systems are directed toward the following: 1. The development of product modelling systems and 2. the development of integrated systems based on CAD, CAP (Computer Aided Planning), CAM and other CIM (Computer Integrated Manu facturing) functionalities.

This book presents selected papers from the 6th International Conference on Mechanical, Manufacturing and Plant Engineering (ICMMPE 2020), held virtually via Google Meet. It highlights the latest advances in the emerging area, brings together researchers and professionals in the field and provides a valuable platform for exchanging ideas and fostering collaboration. Joining technologies could be changed to manufacturing technologies. Addressing real-world problems concerning joining technologies that are at the heart of various manufacturing sectors, the respective papers present the outcomes of the latest experimental and numerical work on problems in soldering, arc welding and solid-state joining technologies.

The ten-volume set LNCS 12949 – 12958 constitutes the proceedings of the 21st International Conference on Computational Science and Its Applications, ICCSA 2021, which was held in Cagliari, Italy, during September 13 – 16, 2021. The event was organized in a hybrid mode due to the Covid-19 pandemic. The 466 full and 18 short papers presented in these proceedings were carefully reviewed and selected from 1588 submissions. The books cover such topics as multicore architectures, mobile and wireless security, sensor networks, open source software, collaborative and social computing systems and tools, cryptography, human computer interaction, software design engineering, and others. Part II of the set follows two general tracks: geometric modeling, graphics and visualization; advanced and emerging applications. Further sections include the proceedings of the workshops: International Workshop on Advanced Transport Tools and Methods (A2TM 2021); International Workshop on Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2021); International Workshop on Advancements in Applied Machine-learning and Data Analytics (AAMDA 2021). At the end of the book there is a block of short papers. The chapter "Spatial justice models: an exploratory analysis on fair distribution of opportunities" is published open access under a CC BY license (Creative Commons Attribution 4.0 International License). /div Modern Applications of Graph Theory discusses many cutting-edge applications of graph theory, such as traffic networks, navigable networks and optimal routing for emergency response, placement of electric vehicle charging stations, and graph-theoretic methods in molecular epidemiology. Due to the rapid growth of research in this field, the focus of the book is on the up-to-date development of these applications and the mathematical methods used to tackle them. Ideal for researchers, engineers, transport planners and emergency response specialists who are interested in graph theory applications, Modern Applications of Graph Theory can also be used as teaching material. In addition to up-to-date descriptions of the applications, it includes extensive exercises and their solutions, mimicking practical, real-life situations. Furthermore, there is an introductory chapter, which provides an overview of basic applications and algorithms of graph theory. The book includes over 120 illustrations and tables.

In the third paper in this chapter, Mike Pratt provides an historical intro duction to solid modeling. He presents the development of the three most freqently used techniques: cellular subdivision, constructive solid modeling and boundary representation. Although each of these techniques devel oped more or less independently, today the designer's needs dictate that a successful system allows access to all of these methods. For example, sculptured surfaces are generally represented using a boundary representation. However, the design of a complex vehicle generally dictates that a sculptured surface representation is most efficient for the 'skin' while constructive solid geometry representation is most efficient for the inter nal mechanism. Pratt also discusses the emerging concept of design by 'feature line'. Finally, he addresses the very important problem of data exchange between solid modeling systems and the progress that is being made towards developing an international standard. With the advent of reasonably low cost scientific workstations with rea sonable to outstanding graphics capabilities, scientists and engineers are increasingly turning to computer analysis for answers to fundamental ques tions and to computer graphics for present~tion of those answers. Although the current crop of workstations exhibit quite impressive computational ca pability, they are still not capable of solving many problems in a reasonable time frame, e. g., executing computational fluid dynamics and finite element codes or generating complex ray traced or radiosity based images. In the sixth chapter Mike Muuss of the U. S.

This textbook is designed for postgraduate studies in the field of 3D Computer Vision. It also provides a useful reference for industrial practitioners; for example, in the areas of 3D data capture, computer-aided geometric modelling and industrial quality assurance. This second edition is a significant upgrade of existing topics with novel findings. Additionally, it has new material covering consumer-grade RGB-D cameras, 3D morphable models, deep learning on 3D datasets, as well as new applications in the 3D digitization of cultural heritage and the 3D phenotyping of crops. Overall, the book covers three main areas: ? 3D imaging, including passive 3D imaging, active triangulation 3D imaging, active time-of-flight 3D imaging, consumer RGB-D cameras, and 3D data representation and visualisation; ? 3D shape analysis, including local descriptors, registration, matching, 3D morphable models, and deep learning on 3D datasets; and ? 3D applications, including 3D face recognition, cultural heritage and 3D phenotyping of plants. 3D computer vision is a rapidly advancing area in computer science. There are many real-world applications that demand high-performance 3D imaging and analysis and, as a result, many new techniques and commercial products have been developed. However, many challenges remain on how to analyse the captured data in a way that is sufficiently fast, robust and accurate for the application. Such challenges include metrology, semantic segmentation, classification and recognition. Thus, 3D imaging, analysis and their applications remain a highly-active research field that will continue to attract intensive attention from the research community with the ultimate goal of fully automating the 3D data capture, analysis and inference pipeline. A virtual prototype is a major interim step towards the creation of a virtual environment. This book explores the simulation, interaction, concepts and tools of virtual prototypes and environments. It provides a mixture of state-of-the-art, advanced research and industrial papers. The 10th International Conference on Human-Computer Interaction, HCI International 2003, is held in Crete, Greece, 22-27 June 2003, jointly with the Symposium on Human Interface (Japan) 2003, the 5th International Conference on Engineering Psychology and Cognitive Ergonomics, and the 2nd International Conference on Universal Access in Human-Computer Interaction. A total of 2986 individuals from industry, academia, research institutes, and governmental agencies from 59 countries submitted their work for presentation, and only those submittals that were judged to be of high scientific quality were included in the program. These papers address the latest research and development efforts and highlight the human aspects of design and use of computing systems. The papers accepted for presentation thoroughly cover the entire field of humancomputer interaction, including the cognitive, social, ergonomic, and health aspects of work with computers. These papers also address major advances in knowledge and effective use of computers in a variety of diversified application areas, including offices, financial institutions, manufacturing, electronic publishing, construction, health care, disabled and elderly people, etc. This book offers a comprehensive introduction to Subdivision Surface Modeling Technology focusing not only on fundamental theories but also on practical applications. It furthers readers' understanding of the contacts between spline surfaces and subdivision surfaces, enabling them to master the Subdivision Surface Modeling Technology for analyzing subdivision surfaces. Subdivision surface modeling is a popular

technology in the field of computer aided design (CAD) and computer graphics (CG) thanks to its ability to model meshes of any topology. The book also discusses some typical Subdivision Surface Modeling Technologies, such as interpolation, fitting, fairing, intersection, as well as trimming and interactive editing. It is a valuable tool, enabling readers to grasp the main technologies of subdivision surface modeling and use them in software development, which in turn leads to a better understanding of CAD/CG software operations. Master's Thesis from the year 2002 in the subject Computer Science - Applied, grade: 2,3 (B), Technical University of Berlin (Institute for Machine Tools and Factory Management (IWF)), 59 entries in the bibliography, language: English, abstract: Integration of a CAx (Computer Aided x) system throughout the product life cycle and among different enterprises is a major issue for industrial competitiveness and collaboration. One of the main successful factors for CAx system integration is efficient methodology for EPDE (Engineering Product Data Exchange). Data exchange is the totality of establishing the approach for and the successful achievement of the transfer of data between two distinct CAx systems. Problem Statement: - Why does an exchanged CAD (Computer Aided Design) model lose some modelling properties? – Especially losses such as model tree (design intent) and features. - What reasons influence that phenomenon? - How can these losses be minimized? 2. Review state of the art of exchange strategies. The review of exchange strategies is focused on which existing approaches are in use today, which capabilities are supported by them, which deficiencies they have, an understanding of state of the art is a precondition for beginning to deal with of the problem statement. 3. Analysis of modelling capabilities regarding feature modelling and structure representation The analysis begins with a short review of existing feature modelling techniques, which will build up a framework for the analysis process. Three CAD systems are analysed – Pro/Engineering, I-DEAS and UniGraphics. Typical models, with the frequently occurring features, are reviewed depending on the feature modelling method and structural representation. 4. Needsidentification The results of the analysis of modelling capabilities lead to the improvement of new methods and techniques. This defines the essential basis for the building of a concept framework. 5. Requirement definitions - How can the model-tree to be exchanged? - How will the exchanged model-tree act? 6. Outline of the thesis The material is organized in three major sections. The first one, the state of the art, examines the fundamentals of exchange approaches, the current state of scientific and commercial exchange approaches and further related technologies. The second one, presents the current state of feature modelling techniques and analyses of three commercial CAD systems according to feature modelling capabilities and structural representation. The next section, the concept framework, designs a concept framework fitting the requirement definitions. The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems.

This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities. Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture "Basics of cutting and abrasive processes" (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.

Copyright: 3ca7c6986662579ef63574f4399893ce