Book The Atmosphere An Introduction To Meteorology An Introduction to Solar Radiation is an introductory text on solar radiation, with emphasis on the methods of calculation for determining the amount of solar radiation incident on a surface on the earth. Topics covered include the astronomical relationship between the sun and the earth; thermal radiation; the solar constant and its spectral distribution; and extraterrestrial solar irradiation. This book is comprised of 12 chapters and begins with an overview of the trigonometric relationships between the sun-earth line and the position of an inclined surface. followed by a discussion on the characteristics of blackbody radiation. The next chapter focuses on the solar constant and its spectral distribution, paying particular attention to extraterrestrial solar spectral irradiance and the sun's blackbody temperature. Subsequent chapters explore extraterrestrial and radiation incident on inclined planes; the optics of a cloudless-sky atmosphere; solar spectral radiation and total (broadband) radiation under cloudless skies; and solar radiation arriving at horizontal surfaces on the earth through cloudy skies. The ground albedo and its spectral and angular variation are also described, along with insolation on inclined surfaces. The last chapter is devoted to instruments for measuring solar radiation, including pyrheliometers and pyranometers. This monograph will serve as a useful guide for energy analysts, designers of thermal devices, architects and engineers, agronomists, and hydrologists as well as senior graduate students. Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting Many worked examples End-of-chapter exercises, with answers provided Based on his 40+ years of research and teaching, John Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors. Introduction to Atmospheric Chemistry is a concise, clear review of the fundamental aspects of atmospheric chemistry. In ten succinct chapters, it reviews our basic understanding of the chemistry of the Earth's atmosphere and discusses current environmental issues, including air pollution, acid rain, the ozone hole, and global change. Written by a well-known atmospheric science teacher, researcher, and author of several established textbooks, this book is an introductory textbook for beginning university courses in atmospheric chemistry. Also suitable for self instruction, numerous exercises and solutions make this textbook accessible to students covering atmospheric chemistry as a part of courses in atmospheric science, meteorology, environmental science, geophysics and chemistry. Together with its companion volume, Basic Physical Chemistry for the Atmospheric Sciences (second edition 2000; Cambridge University Press), Introduction to Atmospheric Chemistry provides a solid introduction to atmospheric chemistry. Our subject is, of course, nothing more than applied physics and chemistry. But in addition to those basic sciences the student of planetary atmospheres needs an overview of atmospheric structure and physical processes as presently understood. This book is intended to help fill that need for both graduate students and research scientists. Although the approach is mainly theoretical, very little basic physics is developed here. Material that is standard fare in third-and fourth-year physics courses is simply absorbed where needed. Designed to accompany Lutgens and Tarbuck's The Atmosphere (7th ed), this laboratory manual features exercises that help students review theoretical concepts through problem solving, simulation and guided thinking. NOTE: You are purchasing a standalone product; MasteringMeteorology does not come packaged with this content. If you would like to purchase both the physical text and MasteringMeteorology search for ISBN-10: 0321984420 / ISBN-13: 9780321984425. That package includes ISBN-10: 0321984625 /ISBN-13: 9780321984623 and ISBN-10: 0321984862/ISBN-13: 9780321984869. For introductory meteorology courses. Providing the perfect storm of rich media and active learning tools. The Atmosphere: An Introduction to Meteorology remains the definitive introductory meteorology text, reinforcing basic concepts with everyday, easy-to-grasp examples. This revision retains the hallmark features professors have come to expect from Tarbuck and Lutgens: a friendly, largely non-technical narrative, timely coverage of recent atmospheric events, and carefully crafted artwork by leading science illustrator Dennis Tasa. The Thirteenth Edition now incorporates a new active-learning approach, integrated mobile media, and MasteringMeteorology, the most complete, easy-touse, engaging tutorial and assessment tool available. This edition also extends its coverage of global climate change with dedicated climate change features in each chapter, coverage of the IPCC 5th Assessment report, and an inquiry-based approach in updated Student Sometimes Ask features with interesting facts that strengthen the connection between students and the content. Also available with MasteringMeteorology. MasteringMeteorology is an online homework, tutorial, and assessment product designed to improve results by helping students quickly master concepts. Students benefit from self-paced activities that feature immediate wrong-answer feedback and hints that emulate the office-hour experience to help keep students on track. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts. #1 NEW YORK TIMES BEST SELLER • In this urgent, authoritative book, Bill Gates sets out a wide-ranging, practical—and accessible—plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help of experts in the fields of physics, chemistry, biology, engineering, political science, and finance, he has focused on what must be done in order to stop the planet's slide to certain environmental disaster. In this book, he not only explains why we need to work toward net-zero emissions of greenhouse gases, but also details what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. Drawing on his understanding of innovation and what it takes to get new ideas into the market, he describes the areas in which technology is already helping to reduce emissions, where and how the current technology can be made to function more effectively, where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete, practical plan for achieving the goal of zero emissions—suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers, and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but if we follow the plan he sets out here, it is a goal firmly within our reach. This is a graduate-level textbook on the global circulation of the Earth's atmosphere—the largescale system of winds by which energy is transported around the planet, from the tropical latitudes to the poles. Written by David Randall, one of the world's foremost experts on the subject, it is the most comprehensive textbook on the topic. Intended for Earth science students who have completed some graduate-level coursework in atmospheric dynamics, the book will help students build on that foundation, preparing them for research in the field. The book describes the many phenomena of the circulation and explains them in terms of current ideas from fluid dynamics and thermodynamics, with frequent use of isentropic coordinates and using the methods of vector calculus. It emphasizes the key roles of water vapor and clouds, includes detailed coverage of energy flows and transformations, and pays close attention to scale interactions. The book also describes the major historical contributions of key scientists, giving a human dimension to the narrative, and it closes with a discussion of how the global circulation is evolving as the Earth's climate changes. The most comprehensive graduate-level textbook on the subject Written by one of the world's leading experts Connects global circulation and climate phenomena Addresses energy, moisture, and angularmomentum balance; the hydrologic cycle; and atmospheric turbulence and convection Emphasizes the energy cycle of the atmosphere; the role of moist processes; and circulation as an unpredictable, chaotic process Helps prepare students for research An online illustration package is available to professors Our Amazing Atmosphere: An Introduction to Weather and Climate provides students with a comprehensive exploration of the earth's atmosphere. The text places special emphasis on relationships between fundamental variables, such as temperature, pressure, winds, and moisture, and how these variables underlie atmospheric phenomena. This approach allows students to acquire a unified and holistic understanding of the atmosphere. The text begins with chapters covering the basic anatomy of the atmosphere and various influences that govern its behavior. Subsequent chapters explore cloud types and precipitation, along with different types of weather systems, such as thunderstorms, mid-latitude low cyclones, and hurricanes. The book includes a detailed description on how weather forecasts are made and a thorough presentation of weather and climate anomalies, as exemplified by El Nino. Students learn how anomalies like El Nino influence long-term weather worldwide, providing them with a glimpse of the interdependence of the atmosphere and other components of the Earth system. The final chapter addresses the all-important issue of climate change, with emphasis on its scientific basis, using concepts introduced in previous chapters. In providing students with foundational knowledge on weather, climate, and atmosphere, Our Amazing Atmosphere is suitable for introductory courses in geology, geosciences, physics, climatology, or any course that studies climate change. Eugene Robl has a Ph.D. in meteorology from the University of Utah, M.S. in physics from Missouri University of Science and Technology, and B.A. in physics from Loyola-Marymount University. He is an instructor in the Department of Atmospheric Sciences at the University of Utah as well as an adjunct professor at Westminster College of Salt Lake City, where he has taught courses in meteorology, astronomy, chemistry, and physics. Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation. Foreword is written by Prof. George Chimonas, a renowned expert on the interactions of gravity waves with turbulence. CD containing real data, computer codes for data analysis and linear gravity wave models included with the text Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies—what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth's atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth's atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary atmospheres/ For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material. This book is an introduction to thermodynamics, fluid mechanics, heat transfer, and combustion for beginning engineering students. In recent years, Earth systems science has advanced rapidly, helping to transform climate change and other planetary risks into major political issues. Changing the Atmosphere strengthens our understanding of this important link between expert knowledge and environmental governance. In so doing, it illustrates how the emerging field of science and technology studies can inform our understanding of the human dimensions of global environmental change. Incorporating historical, sociological, and philosophical approaches, Changing the Atmosphere presents detailed empirical studies of climate science and its uptake into public policy. Topics include the scientific, political, and social processes involved in the creation of scientific knowledge about climate change; the historical and contemporary role of expert knowledge in creating and perpetuating policy concern about climate change; and the place of science in institutions of global environmental governance such as the World Meteorological Organization, the Framework Convention on Climate Change, and the Intergovernmental Panel on Climate Change. Together, the essays demonstrate fundamental connections between the science and politics of planet Earth. In the struggle to create sustainable forms of environmental governance, they indicate, a necessary first step is to understand how communities achieve credible, authoritative representations of nature. Contributors Paul N. Edwards, Dale Jamieson, Sheila Jasanoff, Chunglin Kwa, Clark Miller, Stephen D. Norton, Stephen H. Schneider, Simon Shackley, Frederick Suppe This revised text presents a cogent explanation of the fundamentals of meteorology, and explains storm dynamics for weather-oriented meteorologists. It discusses climate dynamics and the implications posed for global change. The Fourth Edition features a CD-ROM with MATLAB® exercises and updated treatments of several key topics. Much of the material is based on a two-term course for seniors majoring in atmospheric sciences. * Provides clear physical explanations of key dynamical principles * Contains a wealth of illustrations to elucidate text and equations, plus end-of-chapter problems * Holton is one of the leading authorities in contemporary meteorology, and well known for his clear writing style * Instructor's Manual available to adopters NEW IN THIS EDITION * A CD-ROM with MATLAB® exercises and demonstrations * Updated treatments on climate dynamics, tropical meteorology, middle atmosphere dynamics, and numerical prediction A quantitative introduction to the Earth's atmosphere for intermediate-advanced undergraduate and graduate students, with an emphasis on underlying physical principles. This edition has been brought completely up-to-date, and now includes a new chapter on the physics of climate change which builds upon material introduced in earlier chapters, giving the student a broad understanding of some of the physical concepts underlying this most important and topical subject. In contrast to many other books on atmospheric science, the emphasis is on the underlying physics. Atmospheric applications are developed mainly in the problems given at the end of each chapter. The book is an essential resource for all students of atmospheric physics as part of an atmospheric science, meteorology, physics, Earth science, planetary science, or applied mathematics course. Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study Page 5/10 and will be welcomed enthusiastically by students and teachers alike. Reinforcing basic concepts with everyday, easy-to-grasp examples, this highly regarded volume remains the standard introduction to meteorology and the atmosphere – components, problems, and applications. The Eleventh Edition retains hallmark Tarbuck/Lutgens features: a friendly, largely non-technical narrative, timely coverage of recent atmospheric events, and carefully crafted artwork by leading science illustrator Dennis Tasa. The authors continue to provide current reports, including discussion and photos of "Super Tuesday" (the day of many 2008 presidential primaries) and the tornado outbreak in 24 states. The chapter on climate changeis updated to include the findings presented in the fourth assessment of the Intergovernmental Panel on Climate Change. The book's Companion Website is fully updated. Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric dynamics, radiative transfer, severe storms, and global warming. The authors illustrate concepts with full-color, state-of-the-art imagery and cover a vast amount of new information in the field. Extensive numerical and qualitative exercises help students apply basic physical principles to atmospheric problems. There are also biographical footnotes summarizing the work of key scientists, along with a student companion website that hosts climate data; answers to quantitative exercises; full solutions to selected exercises; skew-T log p chart; related links, appendices; and more. The instructor website features: instructor's guide; solutions to quantitative exercises; electronic figures from the book; plus supplementary images for use in classroom presentations. Meteorology students at both advanced undergraduate and graduate levels will find this book extremely useful. Full-color satellite imagery and cloud photographs illustrate principles throughout Extensive numerical and qualitative exercises emphasize the application of basic physical principles to problems in the atmospheric sciences Biographical footnotes summarize the lives and work of scientists mentioned in the text, and provide students with a sense of the long history of meteorology Companion website encourages more advanced exploration of text topics: supplementary information, images, and bonus exercises A revised introduction to meteorology, this text includes updated and expanded material on ozone depletion, global warming, and acid rain. It includes coverage of severe weather events including the 1995 hurricane season and examples from 1996. Fifteen-year-old Aurora finds her perfect life upset when her parents, hoping to have Aurora become more serious and sensible, decide to become settlers on the moon. This book is an introductory graduate-level text on atmospheric remote sensing. The basic interaction between radiation and the atmosphere is examined, and illustrated with actual sensing examples. The focus is on understanding the interactions rather than on presenting mathematical details. The text also serves to supplement atmospheric radiation topics, placing the technology and its application in the broader perspective of contemporary meteorology and atmospheric science. Each chapter is followed by a series of exercises, and Appendix 2 gives five computer projects designed for classroom applications. What do we mean by the tropics? The weather and the climates it produces across the tropical zone are significantly different from those experienced by the people living in higher latitudes, so forecasters across Europe and much of North America are unfamiliar with its effects. In this book, Jim Galvin demystifies the topic in this zone that is increasingly of interest to those studying weather and climate. This book was written for weather forecasters, meteorology, environmental science and geography students as an introductory guide. It builds on the experience of the author, his professional experience in the World Area Forecast Centre at the Met Office, Exeter, using studies into the weather and climate seen within the tropical air mass conducted over many years. Its unique approach presents a practical approach to tropical weather studies, drawing on both academic and practical knowledge, covering air mass dynamics, seasonal changes, moist and dry weather, climate variability and human health in chapters and appendices that build up the overall picture, summarising our current state of knowledge. As an overview, it covers the broad range of effects connected with climate and weather in a straightforward way and is clearly illustrated throughout. This book is a mini-course for researchers in the atmospheric and oceanic sciences. "We assume readers will already know the basics of programming... in some other language." -Back cover. The Atmosphere and Ocean is a fully revised and updated student friendly physical introduction to the atmosphere and ocean. Now in its Third Edition, the book continues to provide students with an accessible description of the atmosphere and ocean with emphasis on their physical properties and inter-dependence. Clearly structured throughout, the book demonstrates that the atmosphere and ocean are both subject to the influence of the earth's rotation and therefore they have a common dynamical basis. The author clearly demonstrates the fundamental differences between the two environments and provides the reader with a much better understanding of the atmosphere and the ocean and an appreciation of their closest interactive relationship. There have been many developments in the field over the past ten years and this latest edition of a highly successful textbook brings together new material on the ocean-atmosphere system and climate, the observed circulation of the atmosphere and ocean and radiation in the atmosphere and ocean. Fully revised and updated 3rd Edition of student friendly physical introduction to the atmosphere and ocean. Now includes new chapters on observed circulation of the atmosphere and ocean, energy flows in the ocean atmosphere system, modeling the ocean and atmosphere, the ocean atmosphere system and climate. Well structured and written in an authoritative yet accessible style suitable for 2nd and 3rd year students taking courses in meteorology, oceanography and related Earth Sciences or as an introduction for graduate students. Emphasis placed on physical properties and interdependence of the ocean and climate. Part of the RMetS (Royal Meteorological Society) book series, Advancing Weather and Climate Science An essential primer on atmospheric processes and their important role in the climate system. The atmosphere is critical to climate change. It can amplify shifts in the climate system, and also mitigate them. This primer offers a short, reader-friendly introduction to these atmospheric processes and how they work, written by a leading expert on the subject. Giving readers an overview of key atmospheric processes, David Randall looks at how our climate system receives energy from the sun and sheds it by emitting infrared radiation back into space. The atmosphere regulates these radiative energy flows and transports energy through weather systems such as thunderstorms, monsoons, hurricanes, and winter storms. Randall explains how these processes work, and also how precipitation, cloud formation, and other phase changes of water strongly influence weather and climate. He discusses how atmospheric feedbacks affect climate change, how the large-scale atmospheric circulation works, how predicting the weather and the climate are fundamentally different challenges, and much more. This is the ideal introduction for students and nonspecialists. No prior experience in atmospheric science is needed, only basic college physics. Authoritative and concise, Atmosphere, Clouds, and Climate features a glossary of terms, suggestions for further reading, and easy-to-follow explanations of a few key equations. This accessible primer is the essential introduction to atmospheric processes and the vital role they play in our climate system. This book is unique in bringing together the diverse concepts and ideas of meteorologists, atmospheric physicists and oceanographers into a single coherent account of the fluid environment, with emphasis on their physical properties and inter-dependence rather than on the mathematics. It provides an up-to-date appreciation of the subject area with reference to major research programmes in Oceanography and Meteorology, and an invaluable combined perspective for undergraduates who tend to compartmentalise themselves. It also shows the way the subject is currently developing and suggests possible future research. Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a The atmosphere is the thin, diffuse fluid that envelops the Earth's surface. Despite its apparent fragility, the existence of this fluid is vital for human and other life on Earth. In this Very Short Introduction Paul Palmer describes the physical and chemical characteristics of different layers in the atmosphere, and shows how the interactions where the atmosphere is in contact with land, ocean, and ice affect its observed physical and chemical properties. He also looks at how movement in the atmosphere, driven by heat from the sun, transports heat from lower latitudes to higher latitudes, and is a fundamental feature of the general circulation in the atmosphere. Finally, Palmer presents an overview of the types of measurements used to understand different parts of the atmosphere, and identifies the future challenges for atmospheric scientists. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable. The Atmosphere: An Introduction to Meteorology, Thirteenth Edition, is designed to meet the needs of students who enroll in such a course. It is our hope that the knowledge gained by taking a class and using this book will encourage many to actively participate in bettering the environment, and others may be sufficiently stimulated to continue their study of meteorology. Equally important, however, is our belief that a basic understanding of the atmosphere and its processes will greatly enhance appreciation of our planet and thereby enrich the reader's life"--Provided by publisher. Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes-- Key Features * Covers the physics of climate change * Examines the nature of the current climate and its previous changes * Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes * Provides instructive end-of-chapter exercises and appendices This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers. Energy and Climate Change: An Introduction to Geological Controls, Interventions and Mitigations examines the Earth system science context of the formation and use of fossil fuel resources, and the implications for climate change. It also examines the historical and economic trends of fossil fuel usage and the ways in which these have begun to affect the natural system (i.e., the start of the Anthropocene). Finally, the book examines the effects we might expect in the future looking at evidence from the "deep time" past, and looks at ways to mitigate climate change by using negative emissions technology (e.g. bioenergy and carbon capture and storage, BECCS), but also by adapting to perhaps a higher than "two degree world," particularly in the most vulnerable, developing countries. Energy and Climate Change is an essential resource for geoscientists, climate scientists, environmental scientists, and students; as well as policy makers, energy professionals, energy statisticians, energy historians and economists. Provides an overarching narrative linking Earth system science with an integrated approach to energy and climate change Includes a unique breadth of coverage from modern to "deep time" climate change; from resource geology to economics; from climate change mitigation to adaptation; and from the industrial revolution to the Anthropocene Readable, accessible, and wellillustrated, giving the reader a clear overview of the topic Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. Provides study questions at the end of each chapter to aid learning Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material Includes the most recent technologies and their applications, allowing the reader to stay up-to-date Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) Presents examples of specific satellite missions, including those in which new technology has been introduced Introduction to the atmosphere -- Heating Earth's surface and atmosphere --Temperature -- Moisture and atmospheric stability -- Forms of condensation and precipitation -- Air pressure and winds -- Circulation of the atmosphere -- Air masses -- Weather patterns -- Thunderstorms and tornadoes -- Hurricanes --Weather analysis and forecasting -- Air pollution -- The changing climate -- World climates -- Optical phenomena of the atmosphere A study of the fundamental theory of waves appropriate for first year graduate students in oceanography, meteorology and associated sciences. Starting with an elementary overview of the basic wave concept, specific wave phenomena are then examined, including: surface gravity waves, internal gravity waves, lee waves, waves in the presence of rotation, and geostrophic adjustment. Each wave topic is used to introduce either a new technique or concept in general wave theory. Emphasis is placed on connectivity between the various subjects and on the physical interpretation of the mathematical results. The book contains numerous exercises at the end of the respective chapters. The AtmosphereAn Introduction to MeteorologyPrentice Hall The second edition of this concise, affordable textbook is ideal for curious undergraduate majors and non-majors taking a first course in meteorology. The first two chapters introduce readers to the main concepts and tools used to analyze weather patterns. Chapters 3-8 provide a foundational understanding of the fundamental processes taking place in the atmosphere, and in Chapters 9-12 these physical concepts are applied to specific weather phenomena. Weather concepts are then used in Chapters 13-15 to explain weather forecasting, air pollution, and the impact of climate change on weather. Key concepts are illustrated through a running case study of a single mid-latitude cyclone, providing students with an opportunity to progressively develop their understanding of weather phenomena with a familiar example approached from multiple perspectives. This edition includes expanded and updated coverage of precipitation types and formation, satellite and radar technology, tornadoes, and more. It also features thought-provoking end-of-chapter review questions, new visual analysis exercises, an expanded test bank and nearly 100 new figures. Copyright: 2d94b73d90e439bcfa94261911f76139