## **Basic Electrical Engineering By J S Katre** The book is written for an undergraduate course on the Basic Electrical Engineering. It provides comprehensive explanation of theory and practice of electrical engineering. It elaborates various aspects of d.c. and a.c. circuit analysis, magnetic circuits, measuring instruments, single phase transformers and various electrical machines. The book starts with the concepts of electric charge, current and potential difference. It explains Kirchhoff's laws, star-delta transformation, mesh analysis and node analysis. It also covers the application of various network theorems in analyzing d.c. circuits. The book incorporates detailed discussion of steady state analysis of single-phase series and parallel a.c. circuits along with the resonance. The book also explains the three phase balanced circuits, three phase power measurement and power factor improvement. The simple techniques and stepwise methods used to explain the phasor diagrams is the feature of the book. The book teaches the theory of various electrical measuring instruments. The book also covers the concept of earthing and electrical safety, which is most important while dealing with the electrical equipment's. The book also includes the discussion of magnetic circuits, self and mutual inductances and magnetic hysteresis. The book further explains the details of single-phase transformers and various electrical machines such as d.c. machines, three phase and single-phase induction motors and synchronous machines. The brief introduction of power system is also incorporated in the book. The book uses plain, lucid language to explain each topic. The book provides the logical method of explaining the various complicated topics and stepwise methods to make the understanding easy. All the chapters are arranged in a proper sequence that permits each topic to build upon earlier studies. The variety of solved examples is the feature of this book which helps to inculcate the knowledge of the basic electrical engineering in the students. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting. This updated version of its internationally popular predecessor provides and introductory problem-solved text for understanding fundamental concepts of electronic devices, their design, and their circuitry. Providing an interface with Pspice, the most widely used program in electronics, new key features include a new chapter presenting the basics of switched mode power supplies, thirty-one new examples, and twenty-three PS solved problems. The third edition of Basic Electrical Engineering is designed for the first year engineering students of University of Mumbai. The crisp yet complete explanation of topics will help the students easily understand the basic concepts. A plethora of various solved examples and exercise problems will enable students to practice better and excel in examinations. Salient Features: - Complete coverage of latest MU syllabus - Steps for drawing phasor diagrams have been covered in detail - Each section concludes with exercises, review questions and multiple choice questions to test understanding of topics - Examination-oriented pedagogy: \* Solved MU problems within chapters: 106 \* Solved examples within chapters: 340 \* Unsolved exercise problems: 251 \* Chapter end review questions: 56 \* Multiple Choice Questions: 126 This book is designed to help the first-year engineering students in building their concepts in the course of Basic Electrical Engineering, It introduces the subject in a simple and lucid manner for a better understanding. It sdopts a student friendly approach with many solved examples and unsolved questions. This book will serve as a stepping stone for students in understanding the course efficiently. It provides complete coverage of MAKAUT 2018 syllabu. The primary objective of vol. I of A Text Book of Electrical Technology is to provied a comprehensive treatment of topics in Basic Electrical Engineering both for electrical aswell as nonelectrical students pursuing their studies in civil, mechnacial, mining, texttile, chemical, industrial, nviromental, aerospace, electronic and computer engineering both at the Degree and diplomalevel. Based on the suggestions received from our esteemed readers, both from India and abroad, the scope of the book hasbeen enlarged according to their requirements. Almost half the solved examples have been deleted and replaced by latest examination papers set upto 1994 in different engineering collage and technical institutions in India and abroad. Basic Electrical and Electronics Engineering is a renowned book that attempts to provide a thorough coverage on basics of electrical and electronics engineering in a single volume. This second edition of the book has been carefully revised to include important topics like domestic wiring, electrical installations, instrument transformers, battery, etc. Written in a lucid manner, it enables the learners to apply the basic concepts of electrical and electronics engineering for multi-disciplinary tasks and lays the foundation for higher level courses. Rich pool of problems and appendices enhance the utility of the book and make it a lasting resource for students and instructors of all branches of engineering. Basic Electrical and Electronics Engineering provides an overview of the basics of electrical and electronic engineering that are required at the undergraduate level. The book allows students outside electrical and electronics engineering to easily With practically-oriented coverage of all the basic concepts in electrical engineering, this text is a general introduction to the field. It integrates conceptual discussions with current, relevant technological applications, presenting modularized coverage of a wide range of topics. In addition, it aims to offer strong pedagogical support and clear explanations. Pocket Book of Electrical Engineering Formulas provides key formulas used in practically all areas of electrical engineering and applied mathematics. This handy, pocket-sized guide has been organized by topic field to make finding information quick and easy. The book features an extensive index and is an excellent quick reference for electrical engineers, educators, and students. Attuned to the needs of undergraduate students of engineering in their first year, Basic Electrical Engineering enables them to build a strong foundation in the subject. A large number of real-world examples illustrate the applications of complex theories. The book comprehensively covers all the areas taught in a one-semester course and serves as an ideal study material on the subject. This book presents comprehensive coverage of all the basic concepts in electrical engineering. It is designed for undergraduate students of almost all branches of engineering for an introductory course in essentials of electrical engineering. This book explains in detail the properties of different electric circuit elements, such as resistors, inductors and capacitors. The fundamental concepts of dc circuit laws, such as Kirchhoff's current and voltage laws, and various network theorems, such as Thevenin's theorem, Norton's theorem, superposition theorem, maximum power transfer theorem, reciprocity theorem and Millman's theorem are thoroughly discussed. The book also presents the analysis of ac circuits, and discusses transient analysis due to switch operations in ac and dc circuits as well as analysis of three-phase circuits. It describes series and parallel RLC circuits, magnetic circuits, and the working principle of different kinds of transformers. In addition, the book explains the principle of energy conversion, the operating characteristics of dc machines, three-phase induction machines and synchronous machines as well as single-phase motors. Finally, the book includes a discussion on technologies of electric power generation along with the different types of energy sources. Key Features: Includes numerous solved examples and illustrations for sound conceptual understanding. Provides well-graded chapter-end problems to develop the problem-solving capability of the students. Supplemented with three appendices addressing matrix algebra, trigonometric identities and Laplace transforms of commonly used functions to help students understand the mathematical concepts required for the study of electrical engineering. Electrical Engineering 101 covers the basic theory and practice of electronics, starting by answering the question "What is electricity?" It goes on to explain the fundamental principles and components, relating them constantly to real-world examples. Sections on tools and troubleshooting give engineers deeper understanding and the know-how to create and maintain their own electronic design projects. Unlike other books that simply describe electronics and provide step-by-step build instructions, EE101 delves into how and why electricity and electronics work, giving the reader the tools to take their electronics education to the next level. It is written in a down-to-earth style and explains jargon, technical terms and schematics as they arise. The author builds a genuine understanding of the fundamentals and shows how they can be applied to a range of engineering problems. This third edition includes more real-world examples and a glossary of formulae. It contains new coverage of: Microcontrollers FPGAs Classes of components Memory (RAM, ROM, etc.) Surface mount High speed design Board layout Advanced digital electronics (e.g. processors) Transistor circuits and circuit design Op-amp and logic circuits Use of test equipment Gives readers a simple explanation of complex concepts, in terms they can understand and relate to everyday life. Updated content throughout and new material on the latest technological advances. Provides readers with an invaluable set of tools and references that they can use in their everyday work. Schaum's Outline of Basic Electrical EngineeringMcGraw-Hill Education A comprehensive guide to electrical engineering. Electrical EngineeringEssence of electricity, Conductors, Semiconductors and insulators (elementary treatment only); Electric field, electric current, Potential and potential difference, Electromotive force, Electric power, Ohm's law, Basic circuit components, Electromagnetism related laws, Magnetic field due to electric current flow, Force on a current carrying conductor placed in a magnetic field, Faradays laws of electromagnetic induction. Types of induced EMF's, Kirchhoff's laws, Simple problems. Network Analysis Basic definitions, Types of elements, types of sources, Resistive networks, Inductive networks, Capacitive networks, Series parallel circuits, Star delta and delta star transformation, Network theorems-Superposition, Thevenins's, Maximum power transfer theorems and simple problems. Magnetic CircuitsBasic definitions, Analogy between electric and magnetic circuits, Magnetization characteristics of Ferro magnetic materials, Self inductance and mutual inductance, Energy in linear magnetic systems, Coils connected in series, Attracting force or electromagnets. Alternating Quantities Principle of ac voltages, Waveforms and basic definitions, Relationship between frequency, Speed and number of poles, Root mean square and average values of alternating currents and voltage, form factor and peak factor, Phasor representation of alternating quantities, The J operator and phasor algebra, analysis of ac circuits with single basic network element, single phase series circuits, Single phase parallel circuits, Single phase series parallel circuits, Power in ac circuits. Transformers Principles of operation, Constructional details, Ideal Transformer and Practical Transformer, Losses, Transformer Test, Efficiency and Regulation Calculations. Direct current machines Principle of operation of dc machines, Armature windings, E.M.F. equation in a dc machine, Torque production in a dc machine, Operation of a dc machine as a generator, Operation of a dc machine as a motor.A.C. MachinesThree phase induction motor, principle of operation, Slip and rotor frequency, Torque (simple problems). Synchronous Machines Principle of operation, EMF equation (Simple problems on EMF). Synchronous motor principle and operation (Elementary treatment only) Basic Instrument Classification of instruments, Operating principles, Essential features of measuring instruments, Moving coil permanent magnet (PMMC) instruments, Moving Iron of Ammeters and Voltmeters (elementary treatment only). This book covers the basic areas of study in the basic, core electrical engineering course. Solved examples and problems enhance the reader's comprehension of the material. It serves as a self-study review for professional engineering exams. This popular dictionary, formerly published as the Penguin Dictionary of Electronics, has been extensively revised and updated, providing more than 5,000 clear, concise, and jargon-free A-Z entries on key terms, theories, and practices in the areas of electronics and electrical science. Topics covered include circuits, power, systems, magnetic devices, control theory, communications, signal processing, and telecommunications, together with coverage of applications areas such as image processing, storage, and electronic materials. The dictionary is enhanced by dozens of equations and nearly 400 diagrams. It also includes 16 appendices listing mathematical tables and other useful data, including essential graphical and mathematical symbols, fundamental constants, technical reference tables, mathematical support tools, and major innovations in electricity and electronics. More than 50 useful web links are also included with appropriate entries, accessible via a dedicated companion website. A Dictionary of Electronics and Electrical Engineering is the most up-to-date quick reference dictionary available in its field, and is a practical and wide-ranging resource for all students of electronics and of electrical engineering. The book is written per the syllabus of first year engineering degree course for various universities. It covers basic topics of electrical engineering. It also includes worked out examples, University examination questions and answers, exercise, etc in every chapter. This book is suitable for course in basic electrical engineering under various Universities. Authors have tried to elucidate the topics in such a way that even a mediocre student can assimilate them. Many solved problems, sample question papers and exercise given in every section will provide a thorough understanding of the topics. Other features include attractive writing style, well structured equations and numerical examples, pictures of high clarity, etc. Students will quickly understand the popularity of this helpful sourcebook--the first edition sold 46,000 copies! The chief emphasis is on solving realistic problems, hundreds of which are included with detailed solutions. This popular study guide concisely yet clearly covers all the areas taught in two-semester survey courses and serves as an ideal review for electrical engineers and others looking for high ratings on the Professional Engineer's Examination. This new edition of a proven textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, Page 2/3 biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors' primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Real-world engineering problems are rarely, if ever, neatly divided into mechanical, electrical, chemical, civil, and other categories. Engineers from all disciplines eventually encounter computer and electronic controls and instrumentation, which require at least a basic knowledge of electrical and other engineering specialties, as well as associated economics, and environmental, political, and social issues. Co-authored by Charles Gross—one of the most well-known and respected professors in the field of electric machines and power engineering—and his worldrenowned colleague Thad Roppel, Fundamentals of Electrical Engineering provides an overview of the profession for engineering professionals and students whose specialization lies in areas other than electrical. For instance, civil engineers must contend with commercial electrical service and lighting design issues. Mechanical engineers have to deal with motors in HVAC applications, and chemical engineers are forced to handle problems involving process control. Simple and easy-to-use, yet more than sufficient in rigor and coverage of fundamental concepts, this resource teaches EE fundamentals but omits the typical analytical methods that hold little relevance for the audience. The authors provide many examples to illustrate concepts, as well as homework problems to help readers understand and apply presented material. In many cases, courses for non-electrical engineers, or non-EEs, have presented watered-down classical EE material. resulting in unpopular courses that students hate and senior faculty members understandingly avoid teaching. To remedy this situation—and create more well-rounded practitioners—the authors focus on the true EE needs of non-EEs, as determined through their own teaching experience, as well as significant input from non-EE faculty. The book provides several important contemporary interdisciplinary examples to support this approach. The result is a full-color modern narrative that bridges the various EE and non-EE curricula and serves as a truly relevant course that students and faculty can both enjoy. This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors' primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. The aim of this book is to provide a consolidated text for the first year B.E. Computer Science and Engineering students and B.Tech Information Technology students of Anna University. The syllabus has been thoroughly revised for the non-semester yearly pattern by the University. The book, made up of five chapters, systematically covers the five units of the syllabus. It begins with a detailed discussion on the fundamentals of electric circuits. DC circuits, AC circuits, 3-phase circuits, resonance and the network theorems. Lecture-type presentation of the rudiments of the fundamentals in conjunction with hundreds of solved examples is the strength of this book. Magnetic circuits and various magnetic elements and their properties, with number of illustrations are presented. DC machines and transformers are further dealt with. Equivalent circuits of machines supported with the respective photographs will ease the reader to understand the concepts of machines much better. Synchronous machines and asynchronous machines and fundamentals of control systems with various practical examples and relevant worked illustrations conclude this book. A large number of numerical illustrations and diagrammatic representations make this book valuable for students and teachers. This comprehensive book with a blend of theory and solved problems on Basic Electrical Engineering has been updated and upgraded in the Second Edition as per the current needs to cater undergraduate students of all branches of engineering and to all those who are appearing in competitive examinations such as AMIE, GATE and graduate IETE. The text provides a lucid yet exhaustive exposition of the fundamental concepts, techniques and devices in basic electrical engineering through a series of carefully crafted solved examples, multiple choice (objective type) questions and review questions. The book covers, in general, three major areas: electric circuit theory, electric machines, and measurement and instrumentation systems. For the first time in India, we have a comprehensive introductory book on Basic Electrical Engineering that caters to undergraduate students of all branches of engineering and to all those who are appearing in competitive examinations such as AMIE, GATE and graduate IETE. The book provides a lucid yet exhaustive exposition of the fundamental concepts, techniques and devices in basic electrical engineering through a series of carefully crafted solved examples, multiple choice (objective type) questions and review questions. The book covers, in general, three major areas: electric circuit theory, electric machines, and measurement and instrumentation systems. Electrical Circuit Theory and Technology is a fully comprehensive text for courses in electrical and electronic principles, circuit theory and electrical technology. The coverage takes students from the fundamentals of the subject, to the completion of a first year degree level course. Thus, this book is ideal for students studying engineering for the first time, and is also suitable for pre-degree vocational courses, especially where progression to higher levels of study is likely. John Bird's approach, based on 700 worked examples supported by over 1000 problems (including answers), is ideal for students of a wide range of abilities, and can be worked through at the student's own pace. Theory is kept to a minimum, placing a firm emphasis on problem-solving skills, and making this a thoroughly practical introduction to these core subjects in the electrical and electronic engineering curriculum. This revised edition includes new material on transients and laplace transforms, with the content carefully matched to typical undergraduate modules. Free Tutor Support Material including full worked solutions to the assessment papers featured in the book will be available at http://textbooks.elsevier.com/. Material is only available to lecturers who have adopted the text as an essential purchase. In order to obtain your password to access the material please follow the guidelines in the book. This book on Basic Electrical Engineering, meant for undergraduate students of all disciplines, encompasses every detail about the required topics as per the syllabi in a student friendly style. Wide variety of problems and the right theoretical depth makes this book a perfect offering on the subject. This Book Is Written For Use As A Textbook For The Engineering Students Of All Disciplines At The First Year Level Of The B.Tech. Programme. The Text Material Will Also Be Useful For Electrical Engineering Students At Their Second Year And Third Year Levels. It Contains Four Parts, Namely, Electrical Circuit Theory, Electromagnetism And Electrical Machines, Electrical Measuring Instruments, And Lastly The Introduction To Power Systems. This Book Also Contains A Good Number Of Solved And Unsolved Numerical Problems. At The End Of Each Chapter References Are Included For Those Interested In Pursuing A Detailed Study. Copyright: 5f42d6f2571619c27829310ac634c8ba