Ansoft Maxwell Induction Motor

This book is devoted to students, PhD students, postgraduates of electrical engineering, researchers, and scientists dealing with the analysis, design, and optimization of electrical machine properties. The purpose is to present methods used for the analysis of transients and steady-state conditions. In three chapters the following methods are presented: (1) a method in which the parameters (resistances and inductances) are calculated on the basis of geometrical dimensions and material properties made in the design process, (2) a method of general theory of electrical machines, in which the transients are investigated in two perpendicular axes, and (3) FEM, which is a mathematical method applied to electrical machines to investigate many of their properties.

Spotlight on Modern Transformer Design introduces a novel approach to transformer design using artificial intelligence (AI) techniques in combination with finite element method (FEM). Today, AI is widely used for modeling nonlinear and large-scale systems, especially when explicit mathematical models are difficult to obtain or completely lacking. Moreover, AI is computationally efficient in solving hard optimization problems. Many numerical examples throughout the book illustrate the application of the techniques discussed to a variety of real-life transformer design problems, including: • problems relating to the prediction of no-load losses; • winding material selection; • transformer design optimisation; • and transformer selection. Spotlight on Modern Transformer Design is a valuable learning tool for advanced undergraduate and graduate students, as well as researchers and power engineering professionals working in electric utilities and industries, public authorities, and design offices. This book showcases new theoretical findings and techniques in the field of intelligent systems and control. It presents in-depth studies on a number of major topics, including: Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control, Guidance, Navigation and Control of Aerial Vehicles, and so on. Given its scope, the book will benefit all researchers, engineers, and graduate students who want to learn about cutting-edge advances in intelligent systems, intelligent control, and artificial intelligence.

This book gathers papers presented during the 4th International Conference on Electrical Engineering and Control Applications. It covers new control system models, troubleshooting tips and complex system requirements, such as increased speed, precision and remote capabilities. Additionally, the papers discuss not only the engineering aspects of signal processing and various practical issues in the broad field of information transmission, but also novel technologies for communication networks and modern antenna design. This book is intended for researchers, engineers and advanced postgraduate students in the fields of control and electrical engineering, computer science and signal processing, as well as mechanical and chemical engineering.

Controlling the level of noise in electrical motors is critical to overall system performance. However, predicting noise of an electrical motor is more difficult and less

accurate than for other characteristics such as torque-speed. Recent advances have produced powerful computational methods for noise prediction, and Noise of Polyphase Electric Motors is the first book to collect these advances in a single source. It is also the first to include noise prediction for permanent magnet (PM) synchronous motors. Complete coverage of all aspects of electromagnetic, structural, and vibro-acoustic noise makes this a uniquely comprehensive reference. The authors begin with the basic principles of noise generation and radiation, magnetic field and radial forces, torque pulsations, acoustic calculations, as well as noise and vibration of mechanical and acoustic origin. Moving to applications, the book examines in detail stator system vibration analysis including the use of finite element method (FEM) modal analysis; FEM for radial pressure and structural modeling; boundary element methods (BEM) for acoustic radiation; statistical energy analysis (SEA); instrumentation including technologies, procedures, and standards; and both passive and active methods for control of noise and vibration. Noise of Polyphase Electric Motors gathers the fundamental concepts along with all of the analytical, numerical, and statistical methods into a unified reference. It supplies all of the tools necessary to improve the noise performance of electrical motors at the design stage.

Surface Impedance Boundary Conditions is perhaps the first effort to formalize the concept of SIBC or to extend it to higher orders by providing a comprehensive, consistent, and thorough approach to the subject. The product of nearly 12 years of research on surface impedance, this book takes the mystery out of the largely overlooked SIBC. It provides an understanding that will help practitioners select, use, and develop these efficient modeling tools for their own applications. Use of SIBC has often been viewed as an esoteric issue, and they have been applied in a very limited way, incorporated in computation as an ad hoc means of simplifying the treatment for specific problems. Apply a Surface Impedance "Toolbox" to Develop SIBCs for Any Application The book not only outlines the need for SIBC but also offers a simple, systematic method for constructing SIBC of any order based on a perturbation approach. The formulation of the SIBC within common numerical techniques-such as the boundary integral equations method, the finite element method, and the finite difference method—is discussed in detail and elucidated with specific examples. Since SIBC are often shunned because their implementation usually requires extensive modification of existing software, the authors have mitigated this problem by developing SIBCs, which can be incorporated within existing software without system modification. The authors also present: Conditions of applicability, and errors to be expected from SIBC inclusion Analysis of theoretical arguments and mathematical relationships Wellknown numerical techniques and formulations of SIBC A practical set of guidelines for evaluating SIBC feasibility and maximum errors their use will produce A careful mix of theory and practical aspects, this is an excellent tool to help anyone acquire a solid grasp of SIBC and maximize their implementation potential.

As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The

Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems. Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics knowhow based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover intelligent computing, information processing, communication technology, automatic control, and their applications in rail transportation etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.

The Handbook of Mixed Methods in Social & Behavioral Research contains a gold mine of articles by leading scholars on what has come to be known as the third methodological movement in social research. Aimed at surveying the differing viewpoints and disciplinary approaches of mixed methods, this breakthrough book examines mixed methods from the research enterprise to paradigmatic issues to application. The book also discusses the strengths and weaknesses of mixed methods designs, and provides an array of specific examples in a variety of disciplines, from psychology to nursing. The book closes with a brief section on how to teach and perform collaborative research using a mixed methods research design. Written so that it can be used either as a pedagogical tool or as a reference for

researchers, the book is rich in examples and includes a glossary, easy-to-follow diagrams, and tables to help readers become more familiar with the language and controversies in this evolving area.

Developments in power electronics and digital control have made the rugged, low-cost, highperformance induction machine the popular choice of electric generator/motor in many industries. As the induction machine proves to be an efficient power solution for the flexible, distributed systems of the near future, the dynamic worldwide market continues to grow. It is imperative that engineers have a solid grasp of the complex issues of analysis and design associated with these devices. The Induction Machines Design Handbook, Second Edition satisfies this need, providing a comprehensive, self-contained, and up-to-date reference on single- and three-phase induction machines in constant and variable speed applications. Picking up where the first edition left off, this book taps into the authors' considerable field experience to fortify and summarize the rich existing literature on the subject. Without drastically changing the effective logical structure and content of the original text, this second edition acknowledges notable theoretical and practical developments in the field that have occurred during the eight years since the first publication. It makes corrections and/or improvements to text, formulae, and figures. New material includes: Introduction of more realistic specifications and reworked numerical calculations in some of the examples Changes in terminology Discussion of some novel issues, with illustrative results from recent literature New and updated photos Data on new mild magnetic materials (metglass) An industrial "sinusoidal" two-phase winding Illustrations of finite element method airgap flux density Enhanced presentations of unbalanced voltage and new harmonic-rich voltage supply IM performance Discussion of stator (multiconductor) winding skin effect by finite element method Broad coverage of induction machines includes applications, principles and topologies, and materials, with numerical examples, analysis of transient behavior waveforms and digital simulations, and design sample cases. The authors address both standard and new subjects of induction machines in a way that will be both practically useful and inspirational for the future endeavors of professionals and students alike.

This book presents papers covering a wide spectrum of theory and practice, deeply rooted in engineering problems at a high practical and theoretical level. The contents explore theory, control systems and applications, the heart of the matter in electrical drives.

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and DrivesJohn Wiley & Sons

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is

a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion. In this work, a developed model of brushless synchronous generator of wound rotor type is designed, analyzed by FEM, practically applied and investigated. A comparison of results with conventional machines is also performed. The presented machine can be applied for multi-pole wind/ hydro generators or double-poles diesel-engine generators. It is self-excited by residual magnetism and a connected capacitor. It is also self-regulated by making use of fluctuations at load or limited speed changes. The generated voltage may last at extended speed range by arranging a generating system with variable capacitance. By eliminating the permanent magnets or advanced manufacturing technology of rotor poles; and without using extra rotating/ external DC exciters, an efficient excitation field and an output of flat self-compensated compound characteristic are obtained. More, the feature of damper windings is determined. Concerning the fact of environmental diminishing of elements in materials of permanent magnets and D.C. Battery, the presented novel machine is hence a good alternative and more economic from generators, exist in the market. Beside, it is safer and highly recommended for power stability when connected to the grid.

Presenting current issues in electric motor design, installation, application, and performance, this second edition serves as the most authoritative and reliable guide to electric motor utilization and assessment in the commercial and industrial sectors. Covering topics ranging from motor energy and efficiency to computer-aided design and equipment selection, this reference assists professionals in all aspects of electric motor maintenance, repair, and optimization. It has been expanded by more than 40 percent to explore the most influential technologies in the field including electronic controls, superconducting generators, recent analytical tools, new computing capabilities, and special purpose motors.

This book features research presented at the 1st International Conference on Artificial Intelligence and Applied Mathematics in Engineering, held on 20–22 April 2019 at Antalya, Manavgat (Turkey). In today's world, various engineering areas are essential components of technological innovations and effective real-world solutions for a better future. In this context, the book focuses on problems in engineering and discusses research using artificial intelligence and applied mathematics. Intended for scientists, experts, M.Sc. and Ph.D. students, postdocs and anyone interested in the subjects covered, the book can also be used as a reference resource for courses related to artificial intelligence and applied mathematics.

The developments of electrical machines are due to the convergence of material progress, improved calculation tools, and new feeding sources. Among the many recent machines, the authors have chosen, in this first book, to relate the progress in slow speed machines, high speed machines, and superconducting machines. The first part of the book is dedicated to materials and an overview of magnetism, mechanic, and heat transfer.

The Mediterranean Electrotechnical Conference provides a forum for the presentation and discussion of the latest advances in research and applications relating to power systems, computer science, photonics, telecommunications and more.

The importance of permanent magnet (PM) motor technology and its impact on electromechanical drives has grown exponentially since the publication of the bestselling second edition. The PM brushless motor market has grown considerably faster than the overall motion control market. This rapid growth makes it essential for electrical and electromechanical engineers and students to stay up-to-date on developments in modern electrical motors and drives, including their control, simulation, and CAD. Reflecting innovations in the development of PM motors for electromechanical drives, Permanent Magnet Motor Technology: Design and Applications, Third Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This edition supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors, including the finite element approach, and explains how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter facilitate a lucid understanding of motor operations and characteristics. This 3rd edition of a bestselling reference has been thoroughly revised to include: Chapters on high speed motors and micromotors Advances in permanent magnet motor technology Additional numerical examples and illustrations An increased effort to bridge the gap between theory and industrial applications Modified research results The growing global trend toward energy conservation makes it quite possible that the era of the PM brushless motor drive is just around the corner. This reference book will give engineers, researchers, and graduate-level students the comprehensive understanding required to develop the breakthroughs that will push this exciting technology to the forefront. Must-have reference for processes involving liquids, gases, and mixtures Reap the timesaving, mistake-avoiding benefits enjoyed by thousands of chemical and process design engineers, research scientists, and educators. Properties of Gases and Liquids, Fifth Edition, is an all-inclusive, critical survey of the most reliable estimating methods in use today --now completely rewritten and reorganized by Bruce Poling, John Prausnitz, and John O'Connell to reflect every late-breaking development. You get on-the-spot information for estimating both physical and thermodynamic properties in the absence of experimental data with this property data bank of 600+ compound constants. Bridge the gap between theory and practice with this trusted, irreplaceable, and expertauthored expert guide -- the only book that includes a critical analysis of existing methods as well as hands-on practical recommendations. Areas covered include pure component constants; thermodynamic properties of ideal gases, pure components and mixtures; pressure-volume-temperature relationships; vapor pressures and enthalpies of vaporization of pure fluids; fluid phase equilibria in multicomponent systems; viscosity; thermal conductivity; diffusion coefficients; and surface tension. This reference explores the sources, characteristics, bioeffects, and health hazards of extremely low-frequency (ELF) fields and radio frequency radiation (RFR), analyzing current research as well as the latest epidemiological studies to assess potential risks associated with exposure and to develop effective safety guidelines. Compiles reports and investigations from four decades of study on the effect of nonionizing electromagnetic fields and radiation on human health Summarizing modern engineering approaches to control exposure,

Electromagnetic Fields and Radiation discusses: EM interaction mechanisms in biological systems Explorations into the impact of EM fields on free radicals, cells, tissues, organs, whole organisms, and the population Regulatory standards in the United States, Canada, Europe, and Asia Pacific Evaluation of incident fields from various EM sources Measurement surveys for various sites including power lines, substations, mobile systems, cellular base stations, broadcast antennas, traffic radar devices, heating equipment, and other sources Dosimetry techniques for the determination of internal EM fields Conclusions reached by the Food and Drug Administration, World Health Organization, and other institutions Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on ind

The book entitled Finite Element Method: Simulation, Numerical Analysis, and Solution Techniques aims to present results of the applicative research performed using FEM in various engineering fields by researchers affiliated to well-known universities. The book has a profound interdisciplinary character and is mainly addressed to researchers, PhD students, graduate and undergraduate students, teachers, engineers, as well as all other readers interested in the engineering applications of FEM. I am confident that readers will find information and challenging topics of high academic and scientific level, which will encourage them to enhance their knowledge in this engineering domain having a continuous expansion. The applications presented in this book cover a broad spectrum of finite element applications starting from mechanical, electrical, or energy production and finishing with the successful simulation of severe meteorological phenomena.

Collection of selected, peer reviewed papers from the 2013 2nd International Conference on Mechatronics and Control Engineering (ICMCE 2013), August 28-29, 2013, Guangzhou, China. Volume is indexed by Thomson Reuters CPCI-S (WoS). The 485 papers are grouped as follows: Chapter 1: Theory of Mechanisms and Mechanical Dynamics Chapter 2: Industrial Robotics and Automation; Chapter 3: Design and Control in Modern Mechatronics System Engineering; Chapter 4: Sensor Technology; Chapter 5: Voice, Image and Video Processing; Chapter 6: Signal Processing System; Chapter 7: Artificial Intelligence and Computational Algorithms; Chapter 8: Measurement Technology, Testing and Instruments; Chapter 9: Automatic Control Technology; Chapter 10: Electric Automation; Chapter 11: Intelligent Traffic Control; Chapter 12: Electronics Technology and Embedded Systems; Chapter 13: Software Development and Application; Chapter 14: Computer Application in Industry and Engineering; Chapter 15: Fluid Engineering and Hydrodynamics; Chapter 16: Materials; Chapter 17: Research and Design in Mechanical Engineering; Chapter 18: Structural Engineering and Architecture Analysis; Chapter 19: Industrial

Engineering and Production Operations Management; Chapter 20: Engineering Education

An Emerging Tool for Pioneering Engineers Co-published by the International Federation of Heat Treatment and Surface Engineering. Thermal processing is a highly precise science that does not easily lend itself to improvements through modeling, as the computations required to attain an accurate prediction of the microstructure and properties of work

Focusing on innovation, these proceedings present recent advances in the field of mechanical design in China and offer researchers, scholars and scientists an international platform to present their research findings and exchange their ideas. In the context of the "Made in China 2025" development strategy, one central aspect of the ICMD2017 was Innovative Design Pushes "Made in China 2025." The book highlights research hotspots in mechanical design, such as design methodology, green design, robotics and mechanics, and reliability design, while also combining industrial design and mechanical design.

Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.

With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condition monitoring scheme—thus improving safety and reliability in electric motor operation. It also supplies a solid foundation in the fundamentals of fault cause and effect. Combines Theoretical Analysis and Practical Application Written by experts in electrical engineering, the book approaches the fault diagnosis of electrical motors through the process of theoretical analysis and practical application. It begins by explaining how to analyze the fundamentals of machine failure using the winding functions method, the Page 8/9

magnetic equivalent circuit method, and finite element analysis. It then examines how to implement fault diagnosis using techniques such as the motor current signature analysis (MCSA) method, frequency domain method, model-based techniques, and a pattern recognition scheme. Emphasizing the MCSA implementation method, the authors discuss robust signal processing techniques and the implementation of reference-frame-theory-based fault diagnosis for hybrid vehicles. Fault Modeling, Diagnosis, and Implementation in One Volume Based on years of research and development at the Electrical Machines & Power Electronics (EMPE) Laboratory at Texas A&M University, this book describes practical analysis and implementation strategies that readers can use in their work. It brings together, in one volume, the fundamentals of motor fault conditions, advanced fault modeling theory, fault diagnosis techniques, and low-cost DSP-based fault diagnosis implementation strategies. Mechatronics is the design and development of computer-controlled mechanical systems, such as the fuel-efficient engine of today s family car. This comprehensive book brings together the knowledge and techniques of the major technical fields and explores the theory behind a wide range of basic devices. It then brings all this knowledge together in various motion control lab experiments, which provide readers with practical experience in designing circuits and writing software. (Midwest). This third edition of the principal text on the finite element method for electrical engineers and electronics specialists presents the method in a mathematically undemanding style, accessible to undergraduates who may be encountering it for the first time. Like the earlier editions, it begins by deriving finite elements for the simplest familiar potential fields, and then formulates finite elements for a wide range of applied electromagnetics problems. These include wave propagation, diffusion, and static fields; open-boundary problems and nonlinear materials; axisymmetric, planar and fully three-dimensional geometries; and scalar and vector fields. A wide selection of demonstration programs allows the reader to follow the practical use of the methods. Besides providing all that is needed for the beginning undergraduate student, this textbook is also a valuable reference text for professional engineers and research students.

Copyright: add361f92dd88151e7957ffad063d539