Analytical Dynamics Haim Baruh Solution

Designed to provide a more mature, in-depth treatment of mechanics this book focuses on developing a solid understanding of basic principles rather than rote learning of specific methodologies.

An introduction to RF propagation that spans all wirelessapplications This book provides readers with a solid understanding of theconcepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RFpropagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-ittreats the growing number of wireless applications that range wellbeyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readersto gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Criticaltopics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCCrecommendations, including application examples, and preparesreaders to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety ofantennas and techniques for antenna analysis, including a detailedtreatment of antenna polarization and axial ratio; the chaptercontains a set of curves that permit readers to estimatepolarization loss due to axial ratio mismatch between transmittingand receiving antennas without performing detailedcalculations * Atmospheric effects chapter provides curves of typicalatmospheric loss, so that expected loss can be determinedeasily * Rain attenuation chapter features a summary of how to apply theITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noisetemperature determination Examples of widely used models provide all the details andinformation needed to allow readers to apply the models withconfidence. References, provided throughout the book, enablereaders to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop anunderstanding of propagation phenomena.

An introductory engineering textbook by an award-winning MIT professor that covers the history of dynamics and the dynamical analyses of mechanical, electrical, and electromechanical systems. This introductory textbook offers a distinctive blend of the modern and the historical, seeking to encourage an appreciation for the history of dynamics while also presenting a framework for future learning. The text presents engineering mechanics as a unified field, emphasizing dynamics but integrating topics from other disciplines, including design and the humanities. The book begins with a history of mechanics, suitable for an undergraduate overview. Subsequent chapters cover such topics as three-dimensional kinematics; the direct approach, also known as vectorial mechanics or the momentum approach; the indirect approach, also called lagrangian dynamics or variational dynamics; an expansion of the momentum and lagrangian formulations to extended bodies; lumped-parameter electrical and electromagnetic devices; and equations of motion for one-dimensional continuum models. The book is noteworthy in covering both lagrangian dynamics and vibration analysis. The principles covered are relatively few and easy to articulate; the examples are rich and broad. Summary tables, often in the form of flowcharts, appear throughout. End-of-chapter problems begin at an

elementary level and become increasingly difficult. Appendixes provide theoretical and mathematical support for the main text.

Advanced Dynamics is a broad and detailed description of the analytical tools of dynamics as used in mechanical and aerospace engineering. The strengths and weaknesses of various approaches are discussed, and particular emphasis is placed on learning through problem solving. The book begins with a thorough review of vectorial dynamics and goes on to cover Lagrange's and Hamilton's equations as well as less familiar topics such as impulse response, and differential forms and integrability. Techniques are described that provide a considerable improvement in computational efficiency over the standard classical methods, especially when applied to complex dynamical systems. The treatment of numerical analysis includes discussions of numerical stability and constraint stabilization. Many worked examples and homework problems are provided. The book is intended for use on graduate courses on dynamics, and will also appeal to researchers in mechanical and aerospace engineering.

These Classic Rock Sheet Music Hits are accessible to the easy-piano-level player while keeping them sounding like the chart-toppers. Titles: * Desperado * Europa * Heartache Tonight * Hotel California * I Can't Tell You Why * Layla * Old Time Rock & Roll * One of These Nights * Open Arms * Peaceful Easy Feeling * Proud Mary and more.

"This set of books represents a detailed compendium of authoritative, research-based entries that define the contemporary state of knowledge on technology"--Provided by publisher.

Borderlines innovatively explores the ways artistic interventions construct social, cultural, and mental spaces. The fifteen essays bring a broad multidisciplinary approach to the concept of borderlines and its markings through artistic manifestations. Rejecting older "normative" understandings of the word border lines as signifying semantic irreversibility, this work gives prominence to the plasticity of the combined single word "borderlines." Borderlines is a collection of essays that address the cultural, artistic, conceptual, and performative mapping of places. The essays in this collection "write" borderlines from a wide variety of perspectives, representing diverse disciplines, cultural backgrounds, countries, and generations. It presents the pervasiveness of borderlines as an intellectual, artistic and political concept, across media, theories, and places. Borderlines is intended for academic specialists and students in cultural studies, theatre and performance, media and sound studies. Author information: Ruthie Abeliovich, The University of Haifa. Edwin Seroussi, The Hebrew University of Jerusalem.

THE HANDBOOK THAT BRIDGES THE GAP BETWEEN ENGINEERING PRINCIPLES AND BIOLOGICAL SYSTEMS The focus in the "Standard Handbook of Biomedical Engineering and Design" is on engineering design informed by description and analysis using engineering language and methodology. Over 40 experts from universities and medical centers throughout North America, the United Kingdom, and Israel have produced a practical reference for the biomedical professional who is seeking to solve a wide range of engineering and design problems, whether to enhance a diagnostic or therapeutic technique, reduce the cost of manufacturing a medical instrument or a prosthetic device, improve the daily life of a patient with a disability, or increase the effectiveness of a hospital department. Heavily illustrated with tables, charts, diagrams, and photographs, most of them original, and filled with equations and useful references, this handbook speaks directly to all practitioners involved in biomedical engineering, whatever their training and areas of specialization. Coverage includes not only fundamental principles, but also numerous recent advances in this fast moving discipline. Major sections include: * Biomedical Systems Analysis * Mechanics of the Human Body * Biomaterials * Bioelectricity * Design of Medical Devices and Diagnostic Instrumentation * Engineering Aspects of Surgery * Rehabilitation Engineering * Clinical Engineering The "Handbook" offers breadth and depth of biomedical

engineering design coverage unmatched in any other general reference.

The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization's Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook's team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/

Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.

This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation and Energy but will also be useful for professionals. The book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications.

A modern vector oriented treatment of classical dynamics and its application to engineering problems.

Analytical DynamicsMcGraw-Hill Science, Engineering & Mathematics

Many structures suffer from unwanted vibrations and, although careful analysis at the design stage can minimise these, the vibration levels of many structures are excessive. In this book the entire range of methods of control, both by damping and by excitation, is described in a single volume. Clear and concise descriptions are given of the techniques for mathematically modelling real structures so that the equations which describe the motion of such structures can be derived. This approach leads to a comprehensive discussion of the analysis of typical models of vibrating structures excited by a range of periodic and random inputs. Careful consideration is also given to the sources of excitation, both internal and external, and the effects of isolation and transmissability. A major part of the book is devoted to damping of structures and many sources of damping are considered, as are the ways of changing damping using both active and passive methods. The numerous worked examples liberally distributed throughout the text, amplify and clarify the theoretical analysis presented. Particular attention is paid to the meaning and interpretation of results, further enhancing the scope and applications of analysis. Over 80 problems are included with answers and worked solutions to most. This book provides engineering students, designers and professional engineers with a detailed insight into the principles involved in the analysis and damping of structural vibration while presenting a sound theoretical basis for further study. Suitable for students of engineering to first degree level and for designers and practising engineers Numerous worked examples Clear and easy to follow

Observing that most books on engineering dynamics left students lacking and failing to grasp the general nature of

dynamics in engineering practice, the authors of Dynamics in Engineering Practice, Eleventh Edition focused their efforts on remedying the problem. This text shows readers how to develop and analyze models to predict motion. While esta The first volume in a three-part series, Elements of Mechanics provides a rigorous calculus-based introduction to classical physics. It considers diverse phenomena in a systematic manner and emphasises the development of consistent and coherent models guided by symmetry considerations and the application of general principles. Modern developments c

This classic text begins with an overview of matrix methods and their application to the structural design of modern aircraft and aerospace vehicles. Subsequent chapters cover basic equations of elasticity, energy theorems, structural idealization, a comparison of force and displacement methods, analysis of substructures, structural synthesis, nonlinear structural analysis, and other topics. 1968 edition.

KEY BENEFIT: This reference introduces a variety of mathematical models for biological systems, and presents the mathematical theory and techniques useful in analyzing those models. Material is organized according to the mathematical theory rather than the biological application. Contains applications of mathematical theory to biological examples in each chapter. Focuses on deterministic mathematical models with an emphasis on predicting the qualitative solution behavior over time. Discusses classical mathematical models from population, including the Leslie matrix model, the Nicholson-Bailey model, and the Lotka-Volterra predator-prey model. Also discusses more recent models, such as a model for the Human Immunodeficiency Virus - HIV and a model for flour beetles. KEY MARKET: Readers seeking a solid background in the mathematics behind modeling in biology and exposure to a wide variety of mathematical models in biology.

Gain a Greater Understanding of How Key Components Work Using realistic examples from everyday life, including sports (motion of balls in air or during impact) and vehicle motions, Applied Dynamics emphasizes the applications of dynamics in engineering without sacrificing the fundamentals or rigor. The text provides a detailed analysis of the principles of dynamics and vehicle motions analysis. An example included in the topic of collisions is the famous "Immaculate Reception," whose 40th anniversary was recently celebrated by the Pittsburgh Steelers. Covers Stability and Response Analysis in Depth The book addresses two-and three-dimensional Newtonian mechanics, it covers analytical mechanics, and describes Lagrange's and Kane's equations. It also examines stability and response analysis, and vibrations of dynamical systems. In addition, the text highlights a developing interest in the industry—the dynamics and stability of land vehicles. Contains Lots of Illustrative Examples In addition to the detailed coverage of dynamics applications, over 180 examples and nearly 600 problems richly illustrate the concepts developed in the text. Topics covered include: General kinematics and kinetics Expanded study of two- and three-dimensional motion, as well as of impact dynamics Analytical mechanics, including Lagrange's and Kane's equations The stability and response of dynamical systems, including vibration analysis Dynamics and stability of ground vehicles Designed for classroom instruction appealing to

undergraduate and graduate students taking intermediate and advanced dynamics courses, as well as vibration study and analysis of land vehicles, Applied Dynamics can also be used as an up-to-date reference in engineering dynamics for researchers and professional engineers.

This text offers a clear presentation of the principles of engineering mechanics: each concept is presented as it relates to the fundamental principles on which all mechanics is based. The text contains a large number of actual engineering problems to develop and encourage the understanding of important concepts. These examples and problems are presented in both SI and Imperial units and the notation is primarily vector with a limited amount of scalar. This edition combines coverage of both statics and dynamics but is also available in two separate volumes.

Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author emphasizes a dual approach to learning in which physical understanding and problem-solving capability are developed simultaneously. Moreover, the author builds both readers' interest and knowledge by: Demonstrating that transport phenomena are pervasive, affecting every aspect of life Offering historical perspectives to enhance readers' understanding of current theory and methods Providing numerous examples drawn from a broad range of fields in the physical and life sciences and engineering Contextualizing problems in scenarios so that their rationale and significance are clear This text generally avoids the use of commercial software for problem solutions, helping readers cultivate a deeper understanding of how solutions are developed. References throughout the text promote further study and encourage the student to contemplate additional topics in transport phenomena. Transport Phenomena is written for advanced undergraduates and graduate students in chemical and mechanical engineering. Upon mastering the principles and techniques presented in this text, all readers will be better able to critically evaluate a broad range of physical phenomena, processes, and systems across many disciplines.

This book provides engineers with the tools to solve real-world heat transfer problems. It includes advanced topics not covered in other books on the subject. The examples are complex and timely problems that are inherently interesting. It integrates Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material.

This collection of 9 essays focuses on instances in world history when cosmopolitan ideas and actions pervaded specific Muslim societies and cultures. The contributors explore the tensions between regional cultures, isolated enclaves and modern nation-states. Cosmopolitanism is a key concept in social and political thought, standing in opposition to closed human group ideologies such as tribalism, nationalism and fundamentalism. Recent discussions of it have been situated within Western self-perceptions. Now, this volume explores it from Muslim perspectives.

A State-of-the-Art Guide to Biomedical Engineering and Design Fundamentals and Applications The two-volume Biomedical Engineering and Design Handbook, Second Edition offers unsurpassed coverage of the entire biomedical engineering field, including fundamental concepts, design and development processes, and applications. This landmark work contains contributions on a wide range of topics from nearly 80 leading experts at universities, medical centers, and commercial and law firms. Volume 1 focuses on the basics of biomedical engineering, including biomedical systems analysis, biomechanics of the human body, biomaterials, and bioelectronics. Filled with more than 500 detailed illustrations, this superb volume provides the foundational knowledge required to understand the design and development of innovative devices, techniques, and treatments. Volume 1 covers: Modeling and Simulation of Biomedical Systems Bioheat Transfer Physical and Flow Properties of Blood Respiratory Mechanics and Gas Exchange Biomechanics of the Respiratory Muscles Biomechanics of Human Movement Biomechanics of the Musculoskeletal System Biodynamics Bone Mechanics Finite Element Analysis Vibration, Mechanical Shock, and Impact Electromyography Biopolymers Biomedical Composites Bioceramics Cardiovascular Biomaterials Dental Materials Orthopaedic Biomaterials Biomaterials to Promote Tissue Regeneration Bioelectricity Biomedical Signal Analysis Biomedical Signal Processing Intelligent Systems and Bioengineering BioMEMS

The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers.

Analytical Dynamics presents a fair and balanced description of dynamics problems and formulations. From the classical methods to the newer techniques used in today's complex and multibody environments, this text shows how those approaches complement each other. The text begins by introducing the reader to the basic concepts in mechanics. These concepts are introduced at the particle mechanics level. The text then extends these concepts to systems of particles, rigid bodies (plane motion and 3D), and lightly flexible bodies. The cornerstone variational principles of mechanics are developed and they are applied to particles, rigid bodies, and deformable bodies. Through this approach, students are exposed to a natural flow of the concepts used in dynamics. In this timely book, leading researchers consider how media inform democracy in six countries – the United States, the United Kingdom, Belgium, the Netherlands, Norway, and Sweden. Taking as their starting point the idea that citizens need to be briefed

adequately with a full and intelligent coverage of public affairs so that they can make responsible, informed choices rather than act out of ignorance and misinformation, contributors use a comparative approach to examine the way in which the shifting media landscape is affecting and informing the democratic process across the globe. In particular, they ask: Can a comparative approach provide us with new answers to the question of how media inform democracy? Has increased commercialization made media systems more similar and affected equally the character of news and public knowledge throughout the USA and Europe? Is soft news and misinformation predominantly related to an American exceptionalism, based on the market domination of its media and marginalized public broadcaster? This study combines a content analysis of press and television news with representative surveys in six nations. It makes an indispensable contribution to debates about media and democracy, and about changes in media systems. It is especially useful for media theory, comparative media, and political communication courses.

Flight Dynamics takes a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. While presenting traditional material that is critical to understanding aircraft motions, it does so in the context of modern computational tools and multivariable methods. Robert Stengel devotes particular attention to models and techniques that are appropriate for analysis, simulation, evaluation of flying qualities, and control system design. He establishes bridges to classical analysis and results, and explores new territory that was treated only inferentially in earlier books. This book combines a highly accessible style of presentation with contents that will appeal to graduate students and to professionals already familiar with basic flight dynamics. Dynamic analysis has changed dramatically in recent decades, with the introduction of powerful personal computers and scientific programming languages. Analysis programs have become so pervasive that it can be assumed that all students and practicing engineers working on aircraft flight dynamics have access to them. Therefore, this book presents the principles, derivations, and equations of flight dynamics with frequent reference to MATLAB functions and examples. By using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers. Introductions to aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment accompany the development of the aircraft's dynamic equations.

From Israel's leading historian, a sweeping history of 1967—the war, what led up to it, what came after, and how it changed everything Tom Segev's acclaimed works One Palestine, Complete and The Seventh Million overturned accepted views of the history of Israel. Now, in 1967—a number-one bestseller in Hebrew—he brings his masterful skills to the watershed year when six days of war reshaped the country and the entire region. Going far beyond a military account, Segev re-creates the crisis in Israel before 1967, showing how economic recession, a full grasp of the Holocaust's horrors, and the dire threats made by neighbor states combined to produce a climate of apocalypse. He depicts the country's bravado after its victory, the mood revealed in a popular joke in which one soldier says to his friend, "Let's take over Cairo"; the friend replies, "Then what shall we do in the afternoon?" Drawing on unpublished letters and diaries, as well as government memos and military records, Segev reconstructs an era of new possibilities and tragic missteps. He introduces the legendary figures—Moshe Dayan, Golda Meir, Gamal Abdul

Nasser, and Lyndon Johnson—and an epic cast of soldiers, lobbyists, refugees, and settlers. He reveals as never before Israel's intimacy with the White House as well as the political rivalries that sabotaged any chance of peace. Above all, he challenges the view that the war was inevitable, showing that a series of disastrous miscalculations lie behind the bloodshed. A vibrant and original history, 1967 is sure to stand as the definitive account of that pivotal year.

Graduate-level text provides strong background in more abstract areas of dynamical theory. Hamilton's equations, d'Alembert's principle, Hamilton-Jacobi theory, other topics. Problems and references. 1977 edition.

The Science of Nutrition, Third Edition offers the best combination of text and media to help students master the toughest nutrition concepts in the course, while providing the richest support to save instructors time. This thoroughly current, research-based nutrition text is uniquely organized around the highly regarded applied approach, which organizes vitamins and minerals based on their functions within the body and is easily seen in the organization of the micronutrient (vitamin and mineral) chapters. Rather than requiring rote memorization, the authors present the micronutrients based on their functions (such as fluid and electrolyte balance, antioxidant function, bone health, energy metabolism, and blood health and immunity), so that students can fully understand their effects on the body.

"This book presents state-of-the-art advancements and developments in the field, and also brings a selection of techniques and algorithms about semantic-based visual information retrieval. It covers many critical issues, such as: multi-level representation and description, scene understanding, semantic modeling, image and video annotation, human-computer interaction, and more"--Provided by publisher.

Assesses current classroom use of technology and proposes a strategy for incorporating technology in America's schools.

Encompassing formalism and structure in analytical dynamics, this graduate-level text discusses fundamentals of Newtonian and analytical mechanics, rigid body dynamics, problems in celestial mechanics and spacecraft dynamics, more. 1970 edition.

A thorough study of the oscillatory and transient motion of mechanical and structural systems, Engineering Vibrations, Second Edition presents vibrations from a unified point of view, and builds on the first edition with additional chapters and sections that contain more advanced, graduate-level topics. Using numerous examples and case studies to r

"Analytical System Dynamics: Modeling and Simulation" combines results from analytical mechanics and system dynamics to develop an approach to modeling constrained multidiscipline dynamic systems. This combination yields a modeling technique based on the energy method of Lagrange, which in turn, results in a set of differential-algebraic equations that are suitable for numerical integration. Using the modeling approach presented in this book enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

Where nostalgia was once dismissed a wistful dream of a never-never land, the academic focus has shifted to how pieces of the past are assembled as the elements in alternative political thinking as well as in artistic expression. The creative use of the past points to the complexities of the conceptualization of nostalgia, while entering areas where the humanities meet the art world and commerce. This collection of essays shows how this bond is politically and socially visible on different levels, from states to local communities, along with

Copyright: 45b0e0f8842c90d09602d7396419a107

creative developments in art, literature and religious practice. Bringing together scholars from a range of disciplines, the book offers analyses from diverse theoretical perspectives, united by an interest in the political and cultural representations of the past in South-East Europe from a long-term perspective. By emphasising how the relationship between loss and creative inspiration are intertwined in cultural production and history writing, these essays cover themes across South-East Europe and provide an insight into how specific agents – intellectuals, politicians, artists – have represented the past and have looked towards the future.