Alexander Schrijver A Course In Combinatorial Optimization

This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books. The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios. What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS

Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems. The first edition won the award for Best 1990 Professional and Scholarly Book in Computer Science and Data Processing by the Association of American Publishers. There are books on algorithms that are rigorous but incomplete and others that cover masses of material but lack rigor. Introduction to Algorithms combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to Page 2/23

be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became the standard reference for professionals and a widely used text in universities worldwide. The second edition features new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming, as well as extensive revisions to virtually every section of the book. In a subtle but important change, loop invariants are introduced early and used throughout the text to prove algorithm correctness. Without changing the mathematical and analytic focus, the authors have moved much of the mathematical foundations material from Part I to an appendix and have included additional motivational material at the beginning. Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses

two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. Nemirovskil. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation. A Course in Combinatorial OptimizationTheory of Linear and Integer ProgrammingJohn Wiley & Sons

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of Page 4/23

filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic guadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications. Optimization Tools for Logistics covers the theory and practice of the main principles of operational research and the ways it can be applied to logistics and decision support with regards to common software. The book is supported by worked problems and examples from industrial case studies, providing a comprehensive tool for readers from a variety of industries. Covers simple explanations of the mathematical theories related to logistics Contains many problems and examples from industrial case studies Includes coverage of the use of readily available software; spreadsheets, project managers, flows simulators

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the

same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".

Constraint Satisfaction Problems (CSPs) are natural computational problems that appear in many areas of theoretical computer science. Exploring which CSPs are solvable in polynomial time and which are NP-hard reveals a surprising link with central questions in universal algebra. This monograph presents a self-contained introduction to the universal-algebraic approach to complexity classification, treating both finite and infinite-domain CSPs. It includes the required background from logic and combinatorics, particularly model theory and Ramsey theory, and explains the recently discovered link between Ramsey theory and topological dynamics and its implications for CSPs. The book will be of interest to graduate students and researchers in theoretical computer science and to mathematicians in logic, combinatorics, and dynamics who wish to learn about the applications of their work in complexity theory.

This book introduces readers to the field of conformance checking as a whole and outlines the fundamental relation between modelled and recorded behaviour. $P_{aae} \frac{6}{23}$

Conformance checking interrelates the modelled and recorded behaviour of a given process and provides techniques and methods for comparing and analysing observed instances of a process in the presence of a model, independent of the model's origin. Its goal is to provide an overview of the essential techniques and methods in this field at an intuitive level, together with precise formalisations of its underlying principles. The book is divided into three parts, that are meant to cover different perspectives of the field of conformance checking. Part I presents a comprehensive yet accessible overview of the essential concepts used to interrelate modelled and recorded behaviour. It also serves as a reference for assessing how conformance checking efforts could be applied in specific domains. Next, Part II provides readers with detailed insights into algorithms for conformance checking, including the most commonly used formal notions and their instantiation for specific analysis questions. Lastly, Part III highlights applications that help to make sense of conformance checking results, thereby providing a necessary next step to increase the value of a given process model. They help to interpret the outcomes of conformance checking and incorporate them by means of enhancement and repair techniques. Providing the core building blocks of conformance checking and describing its main applications, this book mainly addresses students specializing in business

process management, researchers entering process mining and conformance checking for the first time, and advanced professionals whose work involves process evaluation, modelling and optimization.

Martin Grötschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grötschel's doctoral descendant tree 1983–2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 greatgrandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grötschel by the editors (Part I), a contribution by his very special "predecessor" Manfred Padberg on "Facets and Rank of Integer Polyhedra" (Part II), and the doctoral descendant tree 1983–2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-

preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the "scientific facets" of Martin Grötschel who has set standards in theory, computation and applications.

The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis

accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called "Divide-and-Conquer"), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.

This is the first comprehensive reference on trust-region methods, a class of numerical algorithms for the solution of nonlinear convex optimization methods. Its unified treatment covers both unconstrained and constrained problems and Page 10/23

reviews a large part of the specialized literature on the subject. It also provides an up-to-date view of numerical optimization.

This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.

Volume 1 presents successively an introduction followed by 10 chapters and a conclusion: A logistic approach an overview of operations research The basics of graph theory calculating optimal routes Dynamic programming planning and scheduling with PERT and MPM the waves of calculations in a network spanning trees and touring linear programming modeling of road traffic

This book is an elegant and rigorous presentation of integer programming, exposing the subject's mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader's understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and $\frac{Page 11/23}{Page 11/23}$

combinatorial optimization, Integer Programming is destined to become an essential text in the field.

In recent years, the need for a review of the state of the art in Combinatorial Optimization has been felt by many scientists and researchers in the field. The opportunity of achieving this aim was offered by the Deputy Secretary General of the International Centre of Mechanical Sciences, Professor A. Marzollo, who invited the contributors of this volume to Udine for a Workshop. During the meeting the participants discussed their results and their ideas on the future developments of the various facets of this expanding area of applied mathematics. The success of the Workshop and the encouragement of the participants suggested that I collect the main contributions in the present volume. It is my hope that it may both give a sound background to people entering this fascinating area of study and stimulate further research in the field. The Editor Sergio Rinaldi LIST OF CONTRIBUTORS BARTHES, J. P. : Departement d'informatique et de Mathematiques Appli quees - Universite de Technologie de Complegne - 60200 Complegne, France. LAWLER, E. L. : Dept. of Electrical Engineering and Computer Science - University of California at Berkeley - U.S. A. LUCCIO, F. : Universita di Pisa - Pisa - Italy. MAFFIOLI, F. : Istituto di Elettrotecnica ed Elettronica and Centro di Telecomuni cazioni Spaziali of C. N.

R. - Politecnico di Milano - Milano - Italy. MARTELLI, A. : Istituto di Elaborazione dell'Informazione del C. N. R. - Via S. Maria, 46 - Pisa - Italy. Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method

known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs. While "topological combinatorics" might have the ring of a venerable discipline, it actually names a newly consolidated subject that pulls together results mostly from recent decades. This new branch of mathematics nevertheless features ample content accessible to undergraduates. Only specialists will guess the purview from the title alone, namely deducing combinatorial (especially graphtheoretic) results using tools from algebraic topology. Elementary algebraic topology suffices, and the appendixes comprising the last third of the present volume offer a crash course. In the book's four main chapters, Longueville (Univ. of Applied Sciences, Germany) addresses fair-division problems; graph coloring; graph property evasiveness; and embeddings and mappings. Chapter 4 contains a high point: the best available introduction to the famous and notoriously difficult half-century-old thrackle conjecture of J. H. Conway. "Thrackle" means a graph drawing where adjacent edges do not cross but independent edges cross exactly once; Conway simply hazards that thrackleable graphs never have more edges than vertices. Basic results of algebraic topology already have powerful consequences for analysis, but the subject's arcana can look like art for art's

sake. The author's charting of a novel application domain for a core subject makes this book an essential acquisition. Summing Up: Essential. Upper-division undergraduates and above. Upper-division Undergraduates; Graduate Students; Researchers/Faculty; Professionals/Practitioners. Reviewed by D. V. Feldman. This self-contained beginning graduate text covers linear and integer programming, polytopes, matroids and matroid optimization, shortest paths, and network flows.

Graph algorithms are easy to visualize and indeed there already exists a variety of packages to animate the dynamics when solving problems from graph theory. Still it can be difficult to understand the ideas behind the algorithm from the dynamic display alone. CATBox consists of a software system for animating graph algorithms and a course book which we developed simultaneously. The software system presents both the algorithm and the graph and puts the user always in control of the actual code that is executed. In the course book, intended for readers at advanced undergraduate or graduate level, computer exercises and examples replace the usual static pictures of algorithm dynamics. For this volume we have chosen solely algorithms for classical problems from combinatorial optimization, such as minimum spanning trees, shortest paths, maximum flows, minimum cost flows, weighted and unweighted matchings both Page 15/23

for bipartite and non-bipartite graphs. Find more information at http://schliep.org/CATBox/.

This book offers a gentle introduction to the mathematics of both sides of game theory: combinatorial and classical. The combination allows for a dynamic and rich tour of the subject united by a common theme of strategic reasoning. Designed as a textbook for an undergraduate mathematics class and with ample material and limited dependencies between the chapters, the book is adaptable to a variety of situations and a range of audiences. Instructors, students, and independent readers alike will appreciate the flexibility in content choices as well as the generous sets of exercises at various levels.

A complete, highly accessible introduction to one of today's mostexciting areas of applied mathematics One of the youngest, most vital areas of applied mathematics, combinatorial optimization integrates techniques from combinatorics, linear programming, and the theory of algorithms. Because of its success in solving difficult problems in areas from telecommunications to VLSI, from product distribution to airlinecrew scheduling, the field has seen a ground swell of activity over the past decade. Combinatorial Optimization is an ideal introduction to thismathematical discipline for advanced undergraduates and graduatestudents of discrete mathematics, computer science, and operations research. Written by a Page 16/23

team of recognized experts, the text offersa thorough, highly accessible treatment of both classical conceptsand recent results. The topics include: * Network flow problems * Optimal matching * Integrality of polyhedra * Matroids * NP-completeness Featuring logical and consistent exposition, clear explanations ofbasic and advanced concepts, many real-world examples, and helpful,skillbuilding exercises, Combinatorial Optimization is certain tobecome the standard text in the field for many years to come.

The study of directed graphs (digraphs) has developed enormously over recent decades, yet the results are rather scattered across the journal literature. This is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, the authors discuss a large number of applications and their generalizations to topics such as the traveling salesman problem, project scheduling, genetics, network connectivity, and sparse matrices. Numerous exercises are included. For all graduate students, researchers and professionals interested in graph theory and its applications, this book will be essential reading.

Volume 2 begins with an introduction and 4 chapters implementing software tools on cases of practical applications and it ends with a conclusion: The various tools used in this volume Operational research with a spreadsheet Dashboards with spreadsheets and pivot tables Scheduling and planning with a project manager The traffic simulation The conclusion shows the new features that are expected to emerge on spreadsheets as well as project managers, developments and convergences between traffic simulators and new infrastructure that are $\frac{Page}{17/23}$

emerging on road networks. Annex 1 focuses on the installation Solver in Microsoft Excel and Annex 2 focuses on the installation of the Java Development Kit.

An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory-the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field's insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive Page 18/23

coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.

With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms. Integer solutions for systems of linear inequalities, equations, and congruences are considered along with the construction and theoretical analysis of integer programming algorithms. The complexity of algorithms is analyzed dependent upon two parameters: the dimension, and the maximal modulus of the coefficients describing the conditions of the problem. The analysis is based on a thorough treatment of the gualitative and guantitative aspects of integer programming, in particular on bounds obtained by the author for the number of extreme points.

This permits progress in many cases in which the traditional approach--which regards complexity as a function only of the length of the input--leads to a negative result. This is a self-contained exposition of several core aspects of the theory of rational polyhedra with a view towards algorithmic applications to efficient counting of integer points, a problem arising in many areas of pure and applied mathematics. The approach is based on the consistent development and application of the apparatus of generating functions and the algebra of polyhedra. Topics range from classical, such as the Euler characteristic, continued fractions, Ehrhart polynomial, Minkowski Convex Body Theorem, and the Lenstra-Lenstra-Lovasz lattice reduction algorithm, to recent advances such as the Berline-Vergne local formula. The text is intended for graduate students and researchers. Prerequisites are a modest background in linear algebra and analysis as well as some general mathematical maturity. Numerous figures, exercises of varying degree of difficulty as well as references to the literature and publicly available software make the text suitable for a graduate course. This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart's theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises Page 20/23

and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: "You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics." - MAA Reviews "The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography." - Zentralblatt MATH "This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron." — Mathematical Reviews "Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course." — CHOICE Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to

combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index Combinatorial reciprocity is a very interesting phenomenon, which can be described as

follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.

This book contains revised and extended versions of selected papers from the 5th International Conference on Pattern Recognition, ICPRAM 2016, held in Rome, Italy, in February 2016. The 13 full papers were carefully reviewed and selected from 125 initial submissions and describe up-to-date applications of pattern recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance pattern recognition methods.

The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.

Copyright: 7a33308300fe550e39e49d5a71ebc721