Abiotic Stress Tolerance In Crop Plants Breeding And Biotechnology Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level. Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-theart description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance. Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide. Features · Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants · Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability -Stimulates synthesis of information for plant stress biology for biotechnological applications · Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications. In this ready reference, a global team of experts comprehensively cover molecular and cell biology-based approaches to the impact of increasing global temperatures on crop productivity. The work is divided into four parts. Following an introduction to the general challenges for agriculture around the globe due to climate change, part two discusses how the resulting increase of abiotic stress factors can be dealt with. The third part then outlines the different strategies and approaches to address the challenge of climate change, and the whole is rounded off by a number of specific examples of improvements to crop productivity. With its forward-looking focus on solutions, this book is an indispensable help for the agro-industry, policy makers and academia. Abiotic stresses have become an integral part of crop production. One or other persist either in soil, water or in atmosphere. The information in the areas of injury and tolerant mechanisms, variability for tolerance, breeding and biotechnology for improvement of crop plants against abiotic stresses are lying unorganized in different articles of journals and edited books. This information is presented in this book in organized way with up-to-date citations, which will provide comprehensive literatures of recent advances. More emphasis has been given to elaborate the injury and tolerance mechanisms, and development of improved genotypes against stress environments. This book also deals with the plants' symptoms of particular abiotic stress, reclamation of soil and crop/cropping pattern to over come the effect of adverse condition(s). Each has been laid out with systematic approaches to develop abiotic stress tolerant genotypes using biotechnological tools. Use of molecular markers in stress tolerance and development of transgenic also have been detailed. Air pollution and climate change are the hot topic of the days. Thus, the effect of air pollution and climate change on crop plants have been detailed in the final three s of this book. Under abiotic stress, plant produces a large quantity of free radicals (oxidants), which have been elaborated in a separate 'Oxidative Stress'. This book has been divided into seven major parts- physical stress (salt), water stresses (drought and waterlogging), temperature stresses (heat and cold), metal toxicities (aluminium, iron, cadmium, lead, nickel, chromium, copper, zinc etc) and non-metal toxicities (boron and arsenic), oxidative stress, and finally atmospheric stresses (air pollution, radiation and climate change). Hope, this book will be of greater use for the students and researchers, particularly Plant Breeders and Biotechnologists as well as the Botanists, to understand the injury and tolerance mechanisms, and subsequently improvement of crop genotypes for abiotic stresses. Plants are frequently exposed to unfavorable and adverse environmental conditions known as abiotic stressors. These factors can include salinity, drought, heat, cold, flooding, heavy metals, and UV radiation which pose serious threats to the sustainability of crop yields. Since abiotic stresses are major constraints for crop production, finding the approaches to enhance stress tolerance is crucial to increase crop production and increase food security. This book discusses approaches to enhance abiotic stress tolerance in crop plants on a global scale. Plants scientists and breeders will learn how to further mitigate plant responses and develop new crop varieties for the changing climate. Gain a better understanding of the genetic and physiological bases of stress response and stress tolerance as part of crop improvement programs Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches explores innovative methods for breeding new varieties of major crops with resistance to environmental stresses that limit crop production worldwide. Experts provide you with basic principles and techniques of plant breeding as well as work done in relation to improving resistance in specific important world food crops. This book supplies extensive bibliographies at the end of each chapter, as well as tables and figures that illustrate the research findings. Abiotic Stresses is divided into two sections. In the first section, you will find: the general principles of breeding crops for stress resistance genetic engineering and molecular biology procedures for crop improvement for stress environments data on genome mapping and its implications for improving stress resistance in plants information about breeding for resistance/tolerance to salinity, drought, flooding, metals, low nutrient availability, high/low temperatures. The second section of this timely resource focuses on the efforts of acknowledged specialists who concentrated their efforts on important individual crops, such as: wheat barley rice maize oilseed crops cotton tomato This book fills a niche and interface in the available literature as it deals with all of the major stresses from a perspective of crop breeding, covering the latest advances in molecular breeding technology. Abiotic Stresses will help scientists and academics in botany, plant breeding, plant environmental stress studies, agriculture, and horticulture modify and improve breeding programs globally. Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. Describes Engineering Tolerance in Crop Plants Against Abiotic StressCRC Press advancements in OMICS approaches in horticultural crops Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields. advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance Includes Transcription Factors for Abiotic Stress Tolerance in Plants highlights advances in the understanding of the regulatory network that impacts plant health and production, providing important insights for improving plant resistance. Plant production worldwide is suffering serious losses due to widespread abiotic stresses increasing as a result of global climate change. Frequently more than one abiotic stress can occur at once, for example extreme temperature and osmotic stress, which increases the complexity of these environmental stresses. Modern genetic engineering technologies are one of the promising tools for development of plants with efficient yields and resilience to abiotic stresses. Hence deciphering the molecular mechanisms and identifying the abiotic stress associated genes that control plant response to abiotic stresses is a vital requirement in developing plants with increased abiotic stress resilience. Addressing the various complexities of transcriptional regulation, this book includes chapters on cross talk and central regulation, regulatory networks, the role of DOF, WRKY and NAC transcription factors, zinc finger proteins, CRISPR/CAS9-based genome editing, C-Repeat (CRT) binding factors (CBFs)/Dehydration responsive element binding factors (DREBs) and factors impacting salt, cold and phosphorous stress levels, as well as transcriptional modulation of genes involved in nanomaterial-plant interactions. Transcription Factors for Abiotic Stress Tolerance in Plants provides a useful reference by unravelling the transcriptional regulatory networks in plants. Researchers and advanced students will find this book a valuable reference for understanding this vital area. Discusses abiotic stress tolerance and adaptive mechanisms based on the findings generated by unlocking the transcriptional regulatory network in plants Presents various kinds of regulatory gene networks identified for drought, salinity, cold and heat stress in plants Highlights urgent climate change issues in plants and their mitigation using modern biotechnological tools including genome editing. Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses. Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. Explores the progress made in managing abiotic stress, specifically with high yield legumes Highlights the molecular mechanisms related to acclimation Presents proven strategies and emerging approaches to guide additional research Global climate change affects crop production through altered weather patterns and increased environmental stresses. Such stresses include soil salinity, drought, flooding, metal/metalloid toxicity, pollution, and extreme temperatures. The variability of these environmental conditions pared with the sessile lifestyle of plants contribute to high exposure to these stress factors. Increasing tolerance of crop plants to abiotic stresses is needed to fulfill increased food needs of the population. This book focuses on methods of improving plants tolerance to abiotic stresses. It provides information on how protective agents, including exogenous phytoprotectants, can mitigate abiotic stressors affecting plants. The application of various phytoprotectants has become one of the most effective approaches in enhancing the tolerance of plants to these stresses. Phytoprotectants are discussed in detail including information on osmoprotectants, antioxidants, phytohormones, nitric oxide, polyamines, amino acids, and nutrient elements of plants. Providing a valuable resource of information on phytoprotectants, this book is useful in diverse areas of life sciences including agronomy, plant physiology, cell biology, environmental sciences, and biotechnology. Plants are sessile and prone to multiple stresses in the changing environmental conditions. Of the several strategies adopted by plants to counteract the adverse effects of abiotic stress, phytohormones provide signals to allow plants to survive under stress conditions. They are one of the key systems integrating metabolic and developmental events in the whole plant and the response of plants to external factors and are essential for many processes throughout the life of a plant and influence the yield and quality of crops. The book 'Phytohormones and Abiotic Stress Tolerance in Plants' summarizes the current body of knowledge on crosstalk between plant stresses under the influence of phytohormones, and provides state-of-the-art knowledge of recent developments in understanding the role of phytohormones and abiotic stress tolerance in plants. This book presents information on how modulation in phytohormone levels affect regulation of biochemical and molecular mechanisms. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. Provides comprehensive information for developing multiple stress-tolerant crop varieties Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance Includes contribution from world-leading cross-tolerance research group Presents color images and diagrams for effective communication of key concepts Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology. Since recent years, the population across the globe is increasing expeditiously; hence increasing the agricultural productivity to meet the food demands of the thriving population becomes a challenging task. Abiotic stresses pose as a major threat to agricultural productivity. Having an adequate knowledge and apprehension of the physiology and molecular biology of stress tolerance in plants is a prerequisite for counteracting the adverse effect of such stresses to a wider range. This book deals with the responses and tolerance mechanisms of plants towards various abiotic stresses. The advent of molecular biology and biotechnology has shifted the interest of researchers towards unraveling the genes involved in stress tolerance. More effort is being made to understand and pave ways for developing stress tolerance mechanisms in crop plants. Several technologies including Microarray technology, functional genomics, on gel and off gel proteomic approaches have proved to be of utmost importance by helping the physiologists, molecular biologists and biotechnologists in identifying and exploiting various stress tolerance genes and factors for enhancing stress tolerance in plants. This book would serve as an exemplary source of scientific information pertaining to abiotic stress responses and tolerance mechanisms towards various abiotic stresses. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. The negative effect of non-living factors on various living organisms in a particular environment is known as abiotic stress. It can affect the growth and productivity of crops. Salt stress, drought stress, phosphate starvation in plants and serpentine soils are some of the sources of abiotic stress in plants. Chemical priming is one of the methods used to increase the tolerance of abiotic stress in crop plants. In this method, stress-inducing chemical vaccinations are given to plants to help them prepare defense mechanisms to fight when the actual abiotic stress occurs. This book provides comprehensive insights into the field of abiotic stress tolerance in plants. It discusses the fundamentals as well as modern approaches of this discipline. Through this book, we attempt to further enlighten the readers about the new concepts in this field. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants is a must-have reference for researchers and professionals in agronomy, plant science and horticulture. As abiotic stress tolerance is a constant challenge for researchers and professionals working on improving crop production, this book combines recent advances with foundational content, thus offering in-depth coverage on a variety of abiotic stress tolerance mechanisms that help us better understand and improve plant response and growth under stress conditions. The mechanisms explored in this book include stress perception, signal transduction and synthesis of stress-related proteins and other molecules. In addition, the book provides a critical understanding of the networks of genes responsible for abiotic stress tolerance and their utilization in the development of stress tolerance in plants. Practical breeding techniques and modern genetic analyses are also discussed. Unlocks the physiological, biochemical and molecular basis of abiotic stress response and tolerance in crop plants Presents comprehensive information on abiotic stress tolerance, from gene to whole plant level Includes content on antioxidant metabolism, marker-assisted selection, microarrays, next-generation sequencing and genome editing techniques The abiotic stresses like drought, temperature, cold, salinity, heavy metals etc. affect a great deal on the yield performance of the agricultural crops. To cope up with these challenges, plant breeding programs world-wide are focussing on the development of stress tolerant varieties in all crop species. Significant genomic advances have been made for abiotic stress tolerance in various crop species in terms of availability of molecular markers, QTL mapping, genome-wide association studies (GWAS), genomic selection (GS) strategies, and transcriptome profiling. The broad-range of articles involving genomics and breeding approaches deepens our existing knowledge about complex traits. The chapters are written by authorities in their respective fields. This book provides comprehensive and consolidated account on the applications of the most recent findings and the progress made in genomics assisted breeding for tolerance to abiotic stresses in many important major crop species with a focus on applications of modern strategies for sustainable agriculture. The book is especially intended for students, molecular breeders and scientists working on the genomics-assisted genetic improvement of crop species for abiotic stress tolerance. This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy. A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations. A close examination of current research on abiotic stresses in various plant species. The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: Covers a wide range of abiotic stresses in multiple plant species Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species Compiles the most recent research and up-to-date data on stress tolerance Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances Written and edited by prominent scientists and researchers from across the globe Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology. Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants. A fully revised review of the latest research in molecularbasis of plant abiotic stress response and adaptation Abiotic stressors are non-living environmental stressors thatcan have a negative impact on a plants ability to grow and thrivein a given environment. Stressors can range from temperature stress(both extreme heat and extreme cold) water stress, aridity, salinity among others. This book explores the full gamut of plantabiotic stressors and plants molecular responses and adaptations toadverse environmental conditions. The new edition of Plant Abiotic Stress providesup-to-date coverage of the latest research advances in plantabiotic stress adaptation, with special emphasis on the associated integrative aspects of physiology, signaling, andmolecular-genetics. Since the last edition, major advances inwhole genome analysis have revealed previously unknown linkagesbetween genes, genomes, and phenotypes, and new biological and—omics approaches have elucidated previously unknown cellularmechanisms underlying stress tolerance. Chapters are organized by topic, but highlight processes that integrative among diverse stress responses. As with the firstedition, Plant Abiotic Stress will have broad appeal toscientists in fields of applied agriculture, ecology, plantsciences, and biology. This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists. The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them. Hydrogen Sulfide in Plant Biology: Past and Present includes 17 chapters, with topics from cross-talk and lateral root development under stress, to post-translational modifications and disease resistance. With emerging research on the different roles and applications of H2S, this title compiles the latest advances of this key signaling molecule. The development of a plant requires complex signaling of various molecules like H2S in order to achieve regulated and proper development, hence hydrogen sulfide (H2S) has emerged as an important signaling molecule that regulates nearly each and every stage of a plant's lifecycle. Edited by leading experts in the field, this is a must-read for scientists and researchers interested in plant physiology, biochemistry and ecology. Discusses the emerging roles of H2S in plant biology Presents the latest research from leading laboratories across the globe Edited by a team of experts in plant signaling A state-of-the-art guide to recent developments in the understanding of plant response to abiotic stresses. Each chapter reflects how new techniques have helped physiologists, biochemists and molecular biologists to understand the basic problems of abiotic stress in plant species. The book supplies extensive bibliographies at the end of each chapter, as well as tables and figures that illustrate the research findings. Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide. "Multiple biotic and abiotic environmental factors may constitute stresses that affect plant growth and yield in crop species. Advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stres" Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, "system biology" and "omics approaches" in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers. This book highlights some of the most important biochemical, physiological and molecular aspects of plant stress, together with the latest updates. It is divided into 14 chapters, written by eminent experts from around the globe and highlighting the effects of plant stress (biotic and abiotic) on the photosynthetic apparatus, metabolites, programmed cell death, germination etc. In turn, the role of beneficial elements, glutathione-S-transferase, phosphite and nitric oxide in the adaptive response of plants under stress and as a stimulator of better plant performance is also discussed. A dedicated chapter addresses research advances in connection with Capsicum, a commercially important plant, and stress tolerance, from classical breeding to the recent use of large-scale transcriptome and genome sequencing technologies. The book also explores the significance of the liliputians of the plant kingdom (Bryophytes) as biomonitors/bioindicators, and general and specialized bioinformatics resources that can benefit anyone working in the field of plant stress biology. Given the information compiled here, This book is based to a great extent on the biochemical and molecular mechanisms of tolerance of commonly encountered abiotic stresses in nature. This book will deal with increasing temperature, water, salinity, and heavy metals and ozone, and how these abiotic stresses can be managed by microbes through their alleviation mechanisms. Water stress includes both drought and flooding. 1st section outlines the relevance of abiotic stresses in present day environmental conditions. The 2nd section deals with three major stresses - temperature, water and salinity and the metabolic changes and protective adjustments in plants for withstanding these stresses. The 3rd section deals with the role of heavy metals and ozone. The final section is devoted to general abiotic stresses and their alleviation by microbes. These offer a cost-effective and eco-friendly means of combating different stresses. the book will offer a valuable guide for students and researchers of plant molecular biology and stress physiology alike. World population is growing at an alarming rate and is anticipated to reach about six billion by the end of year 2050. On the other hand, agricultural productivity is not increasing at a required rate to keep up with the food demand. The reasons for this are water shortages, depleting soil fertility and mainly various abiotic stresses. The fast pace at which developments and novel findings that are recently taking place in the cutting edge areas of molecular biology and basic genetics, have reinforced and augmented the efficiency of science outputs in dealing with plant abiotic stresses. In depth understanding of the stresses and their effects on plants is of paramount importance to evolve effective strategies to counter them. This book is broadly dived into sections on the stresses, their mechanisms and tolerance, genetics and adaptation, and focuses on the mechanic aspects in addition to touching some adaptation features. The chief objective of the book hence is to deliver state of the art information for comprehending the nature of abiotic stress in plants. We attempted here to present a judicious mixture of outlooks in order to interest workers in all areas of plant sciences. Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology Copyright: e2e8423e0daf71e65205832aa386935f