A Student S To Python For Physical Modeling Creative Coding in Python presents over 30 creative projects that teach kids how to code in the easy and intuitive programming language, Python. Creative Coding in Python teaches the fundamentals of computer programming and demonstrates how to code 30+ fun, creative projects using Python, a free, intuitive, open-source programming language that's one of the top five most popular worldwide and one of the most popular Google search terms in the U.S. Computer science educator Sheena Vaidyanathan helps kids understand the fundamental ideas of computer programming and the process of computational thinking using illustrations, flowcharts, and pseudocode, then shows how to apply those essentials to code exciting projects in Python: Chatbots: Discover variables, strings, integers, and more to design conversational programs. Geometric art: Use turtle graphics to create original masterpieces. Interactive fiction: Explore booleans and conditionals to invent "create your own adventure" games. Dice games: Reuse code to devise games of chance. Arcade games and apps: Understand GUI (graphical user interfaces) and create your own arcade games and apps. What's next? Look at exciting ways to use your powerful new skills and expand your knowledge of coding in Python. Creative Coding in Python gives kids the tools they need to create their own computer programs. &>NOTE: You are purchasing a standalone product; MyProgrammingLab does not come packaged with this content. If you would like to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0134089456/ISBN-13: 9780134089454. That package includes ISBN-10: 0134058437/ISBN-13: 9780134058436 and ISBN-10: 0134058224/ISBN-13: 9780134058221. "For college-level Computer Science courses in Python" Basic Programming and Problem Solving in PythonAs one of the most widely used programming languages in the software industry, Python is desirable to both learn and teach. "Introduction to Programming Using Python" is designed for students eager to learn about the world of programming. Applicable to a range of skill levels, this First Edition textbook provides students with the tools to harness the powerful syntax of Python and understand how to develop computer programs. The compactly written text leverages highly focused chapters, diving deep into the most significant topics to give students an in-depth (rather than superficial) understanding of the language. Using real-world examples and data, the author illustrates practical usage of Python in a way to which students can relate. The text itself is readable, organized, and informative, discussing main points of each topic first and then addressing the peripheral details. Students learn good programming habits the first time-bringing them in line with the best modern programming practices. In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). For kids and beginners of all ages, this picture book teaches you how to code in the Python programming language through an illustrated story. Learning Python has never been this fun...or fast! The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. These students tend not to realize the importance of linear algebra in applied sciences since traditional linear algebra courses tend to cover mathematical contexts but not the computational aspect of linear algebra or its applications to data science and bioinformatics. The author presents the topics in a traditional course yet offers lectures as well as lab exercises on simulated and empirical data sets. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications. Each section starts with working examples to demonstrate how tools from linear algebra can help solve problems in applied science. These exercises start from easy computations, such as computing determinants of matrices, to practical applications on simulated and empirical data sets with R so that students learn how to get started with R along with computational examples in each section and then they learn how to apply what they learn to problems in applied sciences. This book is designed from first principles to demonstrate the importance of linear algebra through working computational examples with R and python including tutorials on how to install R in the Appendix. If a student has never seen R, they can get started without any additional help. Since Python is one of the most popular languages in data science, optimization, and computer science, code supplements are available for students who feel more comfortable with Python. R is used primarily for computational examples to develop student's practical computational skills. Table of Contents Preface List of Figures List of Tables 1. Systems of Linear Equations and Matrices 2. Matrix Arithmetic 3. Determinants 4. Vector Spaces 5. Inner Product Space 6. Eigen values and Eigen vectors 7. Linear Regression 8. Linear Programming Network Analysis Appendices A) The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics. Learn Python better through drafting it by hand! This notebook is perfect for students of Python. This Python language drafting notebook is a great way to write organized code drafts! To aid in code neatness, each line has six light, dashed indentation markers. Clear and organized code is the key to success; Neatness is vital for programming! Made by programmers for programmers. Python Made Easy: Beginners Guide to Programming and Data Analysis using Python Get comprehensive learning of Python Programming starting from the very basics and going up to utilizing python libraries for data analysis and Visualization. Based on the author's journey to master Python, this book will help you to quickly start with writing programs and solving your problems using Python. It provides an ideal and elegant way to start learning Python, both for a newcomer to the programming world and a professional developer expert in other languages. This book comes loaded with illustrations and real-life examples. It gives you exercises which challenge you to refresh your conceptual clarity and write better codes. It is super easy to follow and will work as a self-paced tutorial to get you started with the latest and best in Python. All the advanced Python features to date are included. • Get to know the history, present, and future of Data Science • Get introduced to the basics of Computer Programming • Explore the exciting world of Python using Anaconda • Learn how to install and use Python on your computer • Create your Variables, Objects and learn Syntax of operations • Explore Python's built-in object types like Lists, dictionaries, Tuples, Strings and sets • Learn to make your codes reusable by using functions • Organize your codes, functions and other objects into larger components with Modules • Explore Classes – the Object-Oriented Programming tool for elegant codes • Write complex codes and learn how to handle Errors and Exceptions • Learn about NumPy arrays and operations on them • Explore data analysis using pandas on a real-life data set • Dive into the exciting world of Visualization with 3 chapters on Visualization and Matplotlib • Experience the Power of What you learnt by 3 projects • Learn to make your own application complete with GUI by using API Note: You are purchasing a standalone product; MyProgrammingLab does not come packaged with this content. If you would like to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0133862259/ISBN-13: 978013386225. That package includes ISBN-10: 0133582736/ISBN-13: 9780133582734 and ISBN-10: 0133759113 /ISBN-13: 9780133759112. MyProgrammingLab is not a self-paced technology and should only be purchased when required by an instructor. This text is intended for a one-semester introductory programming course for students with limited programming experience. It is also appropriate for readers interested in introductory programming. In Starting Out with Python®, Third Edition Tony Gaddis' evenly-paced, accessible coverage introduces students to the basics of programming and prepares them to transition into more complicated languages. Python, an easy-to-learn and increasingly popular object-oriented language, allows readers to become comfortable with the fundamentals of programming without the troublesome syntax that can be challenging for novices. With the knowledge acquired using Python, students gain confidence in their skills and learn to recognize the logic behind developing high-quality programs. Starting Out with Python discusses control structures, functions, arrays, and pointers before objects and classes. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, detail-oriented explanations, and an abundance of exercises appear in every chapter. MyProgrammingLab for Starting Out with Python is a total learning package. MyProgrammingLab is an online homework, tutorial, and assessment program that truly engages students in learning. It helps students better prepare for class, quizzes, and exams-resulting in better performance in the course—and provides educators a dynamic set of tools for gauging individual and class programs. Theodomework gramming Experience—This program presents a better teaching and learning experience—for you and your stu Today, anyone in a scientific or technical discipline needs programming skills. Python is an ideal first programming language, and Introduction to Programming in Python is the best guide to learning it. Princeton University's Robert Sedgewick, Kevin Wayne, and Robert Dondero have crafted an accessible, interdisciplinary introduction to programming in Python that emphasizes important and engaging applications, not toy problems. The authors supply the tools needed for students to learn that programming is a natural, satisfying, and creative experience. This example-driven guide focuses on Python's most useful features and brings programming to life for every student in the sciences, engineering, and computer science. Coverage includes Basic elements of programming: variables, assignment statements, built-in data types, conditionals, loops, arrays, and I/O, including graphics and sound Functions, modules, and libraries: organizing programs into components that can be independently debugged, maintained, and reused Object-oriented programming and data abstraction: objects, modularity, encapsulation, and more Algorithms and data structures: sort/search algorithms, stacks, queues, and symbol tables Examples from applied math, physics, chemistry, biology, and computer science—all compatible with Python 2 and 3 Drawing on their extensive classroom experience, the authors provide Q&As, exercises, and opportunities for creative practice throughout. An extensive amount of supplementary information is available at introcs.cs.princeton.edu/python. With source code, I/O libraries, solutions to selected exercises, and much more, this companion website empowers people to use their own computers to teach and learn the material. For courses in Python programming. A clear and student-friendly introduction to the fundamentals of Python In Starting Out with Python(R), 4th Edition, Tony Gaddis' accessible coverage introduces students to the basics of programming in a high level language. Python, an easy-to-learn and increasingly popular object-oriented language, allows readers to become comfortable with the fundamentals of programming without the troublesome syntax that can be challenging for novices. With the knowledge acquired using Python, students gain confidence in their skills and learn to recognize the logic behind developing high-quality programs. Starting Out with Python discusses control structures, functions, arrays, and pointers before objects and classes. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, focused explanations, and an abundance of exercises appear in every chapter. Updates to the 4th Edition include revised, improved problems throughout, and new Turtle Graphics sections that provide flexibility as assignable, optional material. Also Available with MyLab Programming. MyLab(TM) Programming is an online learning system designed to engage students and improve results. MyLab Programming consists of programming exercises correlated to the concepts and objectives in this book. Through practice exercises and immediate, personalized feedback, MyLab Programming improves the programming competence of beginning students who often struggle with the basic concepts of programming languages. Note: You are purchasing a standalone product; MyLab Programming does not come packaged with this content. Students, if interested in purchasing this title with MyLab Programming, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Programming, search for: 0134543661 / 9780134543666 / 9780134543669 MyLab Programming with Pearson eText -- Acc This access card provides access to MyLab Programming. Pearson eText is included. A clear and student-friendly introduction to the fundamentals of Python In Starting Out with Python(R), 5th Edition, Tony Gaddis' accessible coverage introduces students to the basics of programming in a high level language. Python, an easy-to-learn and increasingly popular object-oriented language, allows readers to become comfortable with the fundamentals of programming without the troublesome syntax that can be challenging for novices. With the knowledge acquired using Python, students gain confidence in their skills and learn to recognize the logic behind developing high-quality programs. Starting Out with Python discusses control structures, functions, and lists before classes. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, focused explanations, and an abundance of exercises appear in every chapter. Updates to the 5th Edition include a new chapter on database programming, and new coverage of GUI programming, string processing and formatting, and turtle graphics topics. Personalize learning with MyLab Programming By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. With MyLab Programming, students work through hundreds of short, auto-graded coding exercises and receive immediate and helpful feedback based on their work. Plus, get anytime, anywhere access with Pearson eText Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience available within MyLab. It lets students highlight and take notes, all in one place - even when offline. Educators can easily customize the table of contents and share their own notes with students so they see the connection between their eText and what they learn in class. NOTE: You are purchasing an access code only. Before purchasing, check with your instructor to confirm the correct ISBN. Several versions Introduction to Python Programming is written for students who are beginners in the field of computer programming. This book presents an intuitive approach to the concepts of Python Programming for students. This book differs from traditional texts not only in its philosophy but also in its overall focus, level of activities, development of topics, and attention to programming details. The contents of the book are chosen with utmost care after analyzing the syllabus for Python course prescribed by various top universities in USA, Europe, and Asia. Since the prerequisite know-how varies significantly from student to student, the book's overall overture addresses the challenges of teaching and learning of students which is fine-tuned by the authors' experience with large sections of students. This book uses natural language expressions instead of the traditional shortened words of the programming world. This book has been written with the goal to provide students with a textbook that can be easily understood and to make a connection between what students are learning and how they may apply that knowledge. Features of this book This book does not assume any previous programming experience, although of course, any exposure to other programming languages is useful This book introduces all of the key concepts of Python programming language with helpful illustrations Programming examples are presented in a clear and consistent manner Each line of code is numbered and explained in detail Use of f-strings throughout the book Hundreds of real-world examples are included and they come from fields such as entertainment, sports, music and environmental studies Students can periodically check their progress with in-chapter quizzes that appear in all chapters Perkovic's Introduction to Computing Using Python: An Application Development Focus, 2nd Edition is more than just an introduction to programming. It is an inclusive introduction to Computer Science that takes the pedagogical approach of "the right tool for the job at the right moment," and focuses on application development. The approach is hands-on and problem-oriented, with practice problems and solutions appearing throughout the text. The text is imperative-first, but does not shy away from discussing objects early where appropriate. Discussions of user-defined classes and Object-Oriented Programming appear later in the text, when students have more background and concepts can be motivated. Chapters include an introduction to problem solving techniques and classical algorithms, problem-solving and programming and ways to apply core skills to application development. This edition also includes examples and practice problems provided within a greater variety of domains. It also includes case studies integrated into additional chapters, providing students with real life applications using the concepts and tools covered in the chapters. The five-volume set LNCS 11536, 11537, 11538, 11539, and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter "Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. An organized treatment of performance studies theory, practice and pedagogy. The 18 essays by scholars and educators seek to reflect the emergent and contested nature of performance studies, a field that looks at the broad range of human performance from everyday conversation to formal theatre. Now more than ever, as a worldwide STEM community, we need to know what pre-collegiate teachers and students explore, learn, and implement in relation to computer science and engineering education. As computer science and engineering education are not always "stand-alone" courses in pre-collegiate schools, how are pre-collegiate teachers and students learning about these topics? How can these subjects be integrated? Explore six articles in this book that directly relate to the currently hot topics of computer science and engineering education as they tie into pre-collegiate science, technology, and mathematics realms. There is a systematic review article to set the stage of the problem. Following this overview are two teacher-focused articles on professional development in computer science and entrepreneurship venture training. The final three articles focus on varying levels of student work including pre-collegiate secondary students' exploration of engineering design technology, future science teachers' (collegiate students) perceptions of engineering, and pre-collegiate future engineers' exploration of environmental radioactivity. All six articles speak to computer science and engineering education in pre-collegiate forums, but blend into the collegiate world for a look at what all audiences can bring to the conversation about these topics. This resource is written to follow the updated IGSCE® Computer Science syllabus 0478 with examination from June and November 2016. Cambridge IGCSE® and O Level Computer Science Programming Book for Python accompanies the Cambridge IGCSE and O Level Computer Science coursebook, and is suitable for students and teachers wishing to use Python in their studies. It introduces and develops practical skills to guide students in developing coding solutions to the tasks presented in the book. Starting from simple skills and progressing to more complex challenges, this book shows how to approach a coding problem using Structure Diagrams and Flow Charts, explains programming logic using pseudocode, develops Python programming skills and gives full solutions to the tasks set. As an introduction to programming for the Digital Humanities (DH), this book presents six key assignments oriented on DH topics. The topics include Computing Change Over Time (visualizing the burials at the historic cemetery). Textual Analysis (finding word frequencies and "stop words" in public domain texts). XML Transformation historic cemetery), Visualizing Change Over Time (visualizing the burials at the historic cemetery), Textual Analysis (finding word frequencies and "stop words" in public domain texts), XML Transformation (transforming a simplified version of XML into HTML styled with CSS), Stylometry (comparing the measured features of graphic images), and Social Network Analysis (analyzing extended relationships in historic circles). The book focuses on the practical application of these assignments in the classroom, providing a range of variations for each assignment, which can be selected on the basis of students' specific programming background and skills; "atomic" assignments, which can be used to give students the experience they need to successfully complete the main assignments; and some common pitfalls and gotchas to manage in the classroom. The book's chief goals are to introduce novice computer science (CS) students to programming for DH, and to offer them valuable hands-on experience with core programming concepts. Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet. Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software. This book uses the Python 3 language. The earlier Python 2 version of this book is titled "Python for Informatics: Exploring Information". There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course. Alice Dreaming is a play for secondary students that tells a uniquely Australian story. Trapped by the expectations of others, a girl escapes into her imagination. Following an albatross, Alice takes a journey across Australia that eventually brings her closer to home and an understanding of who she is. Inspired by Alice's Adventures in Wonderland and The Wizard of Oz, it is a play written about teenagers, for teenagers. Embracing a non-naturalistic theatrical language, Alice Dreaming can incorporate a number of performance elements, including puppetry, mask, music and dance. Roles are suitable for performance by both boys and girls. The cast includes 29 speaking roles plus chorus. The play runs for 60-80 minutes. Designed to provoke discussion and debate, Alice Dreaming can be used as a classroom resource to develop student thinking around both personal issues and social issues, including the environment, politics and Australian history. Master today's required computer science topics while preparing for further study with Lambert's FUNDAMENTALS OF PYTHON: FIRST PROGRAMS. This book's easygoing approach is ideal for readers with any type of background. The approach starts with simple algorithmic code and then scales into working with functions, objects, and classes as the problems become more complex and require new abstraction mechanisms. Rather than working only with numeric or text-based applications like other introductions, this edition presents graphics, image manipulation, GUIs, and simple networked client/server applications. The author uses Python's standard Turtle graphics module to introduce graphics and to provide open source frameworks for easy image processing and GUI application development. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. NOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, and registrations are not transferable. To register for and use Pearson's MyLab & Mastering products, you may also need a Course ID, which your instructor will provide. Used books, rentals, and purchases made outside of Pearson If purchasing or renting from companies other than Pearson, the access codes for Pearson's MyLab & Mastering products may not be included, may be incorrect, or may be previously redeemed. Check with the seller before completing your purchase. This text is intended for a one-semester introductory programming course for students with limited programming experience. It is also appropriate for readers interested in introductory programming. In Starting Out with Python®, Third Edition Tony Gaddis' evenly-paced, accessible coverage introduces students to the basics of programming and prepares them to transition into more complicated languages. Python, an easy-to-learn and increasingly popular object-oriented language, allows readers to become comfortable with the fundamentals of programming without the troublesome syntax that can be challenging for novices. With the knowledge acquired using Python, students gain confidence in their skills and learn to recognize the logic behind developing high-quality programs. Starting Out with Python discusses control structures, functions, arrays, and pointers before objects and classes. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, detail-oriented explanations, and an abundance of exercises appear in every chapter. MyProgrammingLab for Starting Out with Python is a total learning package. MyProgrammingLab is an online homework, tutorial, and assessment program that truly engages students in learning. It helps students better prepare for class, quizzes, and exams--resulting in better performance in the course--and provides educators a dynamic set of tools for gauging individual and class progress. Teaching and Learning Experience This program presents a better teaching and learning experience-for you and your students. It will help: Personalize Learning with MyProgrammingLab: Through the power of practice and immediate personalized feedback, MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of programming. Enhance Learning with the Gaddis Approach: Gaddis's accessible approach features clear and easy-to-read code listings, concise real-world examples, and exercises in every chapter. Support Instructors and Students: Student and instructor resources are available to expand on the topics presented in the text. Keep Your Course Curr A Student's Guide to Python for Physical ModelingUpdated EditionPrinceton University Press This book is the ultimate beginners' crash course to Python programming, as it will help you learn enough about the language in as little as 1 week. Complex concepts in developing databasedriven projects are broken down into easy steps to ensure that you can easily master the Python language even if you have never coded before. The best way to learn Python is by doing it. This book covers microsoft acces and SQLite based GUI programming using pyqt. Intentionally designed for various levels of interest and ability of learners, this book is suitable for those who are completely newbies with Python, those who have basic information of this programming language, and those who already have the knowledge but perhaps they want to master it well. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and guery the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and guery over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have VARBINARY(MAX) data type. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator id (primary key), investigator name, rank, birth date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In the last chapter, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well. A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that is rapidly gaining popularity throughout the sciences. This fully updated edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises--with solutions—illustrate new ideas as they are introduced. Web-based resources also accompany this guide and include code samples, data sets, and more. This current edition brings the discussion of the Python language, Spyder development environment, and Anaconda distribution up to date. In addition, a new appendix introduces Jupyter notebooks. A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that has gained popularity throughout the sciences. This fully updated second edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This guide introduces a wide range of useful tools, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Animation Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. This guide also includes supplemental online resources: code samples, data sets, tutorials, and more. This edition includes new material on symbolic calculations with SymPy, an introduction to Python libraries for data science and machine learning (pandas and sklearn), and a primer on Python classes and object-oriented programming. A new appendix also introduces command line tools and version control with Git. Learn programming with Python in this fun and easy-to-follow course designed for high-school and college-age students. This book presents innovative ideas, cutting-edge findings, and novel techniques, methods, and applications in a broad range of cybersecurity and cyberthreat intelligence areas. As our society becomes smarter, there is a corresponding need to secure our cyberfuture. The book describes approaches and findings that are of interest to business professionals and governments seeking to secure our data and underpin infrastructures, as well as to individual users. This book gathers selected papers presented at the 2020 World Conference on Information Systems and Technologies (WorldCIST'20), held in Budva, Montenegro, from April 7 to 10, 2020. WorldCIST provides a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences with and challenges regarding various aspects of modern information systems and technologies. The main topics covered are A) Information and Knowledge Management; B) Organizational Models and Information Systems; C) Software and Systems Modeling; D) Software Systems, Architectures, Applications and Tools; E) Multimedia Systems and Applications; F) Computer Networks, Mobility and Pervasive Systems; G) Intelligent and Decision Support Systems; H) Big Data Analytics and Applications; I) Human–Computer Interaction; J) Ethics, Computers & Security; K) Health Informatics; L) Information Technologies in Education; M) Information Technologies for Biomedical Applications. This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. From the ads that track us to the maps that guide us, the twenty-first century runs on code. The business world is no different. Programming has become one of the fastest-growing topics at business schools around the world. An increasing number of MBAs are choosing to pursue careers in tech. For them and other professionals, having some basic coding knowledge is a must. This book is an introduction to programming with Python for MBA students and others in business positions who need a crash course. One of the most popular programming languages, Python is used for tasks such as building and running websites, data analysis, machine learning, and natural-language processing. Drawing on years of experience providing instruction in this material at Columbia Business School as well as extensive backgrounds in technology, entrepreneurship, and consulting, Mattan Griffel and Daniel Guetta teach the basics of programming from scratch. Beginning with fundamentals such as variables, strings, lists, and functions, they build up to data analytics and practical ways to derive value from large and complex datasets. They focus on business use cases throughout, using the real-world example of a major restaurant chain to offer a concrete look at what Python can do. Written for business students with no previous coding experience and those in business roles that include coding or working with coding teams, Python for MBAs is an indispensable introduction to a versatile and powerful programming language. A user-friendly, object-oriented language, Python is quickly becoming the favorite introductory programming language among students and instructors. Many find Python to be a more lucid language than Java but with much of the functionality and therefore the ideal first language for those entering the world of Computer Science. Python Programming in Context is a clear, accessible introduction to the fundamental programming and problem solving concepts necessary for students at this level. The authors carefully build upon the many important computer science concepts and problem solving techniques throughout the text and offer relevant, real-world examples and exercises to reinforce key material. Programming skills throughout the text are linked to applied areas such as Image Processing, Cryptography, Astronomy, Music, the Internet, and Bioinformatics, giving students a well rounded look of its capabilities. The programming language Python was conceived in the late 1980s, [1] and its implementation was started in December 1989[2] by Guido van Rossum at CWI in the Netherlands as a successor to the ABC (programming language) capable of exception handling and interfacing with the Amoeba operating system.[3] Van Rossum is Python's principal author, and his continuing central role in deciding the direction of Python is reflected in the title given to him by the Python community, Benevolent Dictator for Life (BDFL).[4][5] Python was named for the BBC TV show Monty Python's Flying Circus.[6] Python 2.0 was released on October 16, 2000, with many major new features, including a cycle-detecting garbage collector (in addition to reference counting) for memory management and support for Unicode. However, the most important change was to the development process itself, with a shift to a more transparent and community-backed process.[7] Python 3.0, a major, backwards-incompatible release, was released on December 3, 2008[8] after a long period of testing. Many of its major features have also been backported to the backwards-compatible Python 2.6 and 2.7.[9] In February 1991, van Rossum published the code (labeled version 0.9.0) to alt.sources.[10] Already present at this stage in development were classes with inheritance, exception handling, functions, and the core datatypes of list, dict, str and so on. Also in this initial release was a module system borrowed from Modula-3; Van Rossum describes the module as "one of Python's major programming units."[1] Python's exception model also resembles Modula-3's, with the addition of an else clause.[3] In 1994 comp.lang.python, the primary discussion forum for Python, was formed, marking a milestone in the growth of Python's userbase.[1] Python reached version 1.0 in January 1994. The major new features included in this release were the functional programming tools lambda, map, filter and reduce. Van Rossum stated that "Python acquired lambda, reduce(), filter() and map(), courtesy of programming more accessible to more people, with a basic "literacy" in programming languages, similar to the basic English literacy and mathematics skills required by most employers. Python served a central role in this: because of its focus on clean syntax, it was already suitable, and CP4E's goals bore similarities to its predecessor, ABC. The project was funded by DARPA,[13] As of 2007, the CP4E project is inactive, and while Python attempts to be easily learnable and not too arcane in its syntax and semantics, reaching out to non-programmers is not an active concern.[14] Here are what people are saying about the book: This is the best beginner's tutorial I've ever seen! Thank you for your effort. -- Walt Michalik The best thing i found was "A Byte of Python," which is simply a brilliant book for a beginner. It's well written, the concepts are well explained with self evident examples. -- Joshua Robin Excellent gentle introduction to programming #Python for beginners -- Shan Rajasekaran Best newbie guide to python -- Nickson Kaigi start to love python with every single page read -- Herbert Feutl perfect beginners guide for python, will give u key to unlock magical world of python Research-based insights and practical advice about effective learning strategies In this new edition of the highly regarded Why Don't Students Like School? cognitive psychologist Daniel Willingham turns his research on the biological and cognitive basis of learning into workable teaching techniques. This book will help you improve your teaching practice by explaining how you and your students think and learn. It reveals the importance of story, emotion, memory, context, and routine in building knowledge and creating lasting learning experiences. With a treasure trove of updated material, this edition draws its themes from the most frequently asked questions in Willingham's "Ask the Cognitive Scientist" column in the American Educator. How can you teach students the skills they need when standardized testing just requires facts? Why Copyright: ebfd9a44c0167eb400866237a6003ad8